## e+/e- Vertical Beam Dynamics during CESR-C Operation

I. Introduction
II. e+ turn-by-turn vertical dynamics
III. e-turn-by-turn vertical dynamics
IV. Summary
R. Holtzapple, J. Kern, and E.Tanke

January 4, 2007

## I. Introduction

File: $935 \mathrm{I}_{\mathrm{e}-}=52.52 \mathrm{~mA}(\sim 2.3 \mathrm{~mA} /$ bunch $), \mathrm{I}_{\mathrm{e}+}=64.03 \mathrm{~mA}(\sim 2.8 \mathrm{~mA} /$ bunch $)$
File: $938 \mathrm{I}=43.16 \mathrm{~mA}(\sim 1.9 \mathrm{~mA} /$ bunch $) \mathrm{I}=48.91 \mathrm{~mA}(\sim 2.1 \mathrm{~mA} /$ bunch $)$
e+/e- CESR-C
1,7x3,1 Pattern
Single bunch currents
Turn-by-turn vertical beam distribution measurements made at the beginning and end of a CESR-C run and the end of a $2^{\text {nd }}$ CESR-C run (a different fill). $\Delta t=32 \mathrm{~min}$ between the first two measurements. $\Delta t=74$ min between the $2^{\text {nd }}$ and $3^{\text {rd }}$ measurement. The $2^{\text {nd }}$ measurement was made for electrons only.

$A^{*}=\exp \left(-\left((x-B) /\left(\operatorname{sqtr}(2)^{*} C\right)\right)^{2}\right)+D$

e+ Bunch 4 Train 1
$1^{\text {st }}$ ten turns (movie)
II. e+ turn-by-turn measurements
e+ single bunch vertical bunch distributions from the PMT array.
$\cdot 10,000$ turns of all 23 e+/e- bunches.
-Reflections in the optical system required that the vertical profile be moved to one side.

- High I File:935 $\mathrm{I}_{\mathrm{e}+}=2.8 \mathrm{~mA} /$ bunch
e+ Bunch 2 Train 4
$1^{\text {st }}$ ten turns (movie)



High I File:935 $\mathrm{l}_{\mathrm{e}+}=2.8 \mathrm{~mA} /$ bunch (movie)


## e+ Vertical Position

- e+ mean vertical position along the train-offset was included to have the plots coincide.
- Mean vertical position for 10,000 turns for 54 bunches.
-Low frequency vertical oscillation is denoted for all 54 bunches.
-At high I, a significant drop in vertical position is denoted along the train.

Low I File:938 $\mathrm{I}_{\mathrm{e}+}=2.1 \mathrm{~mA} /$ bunch (movie)

e+ vertical position oscillation- FFT of vertical position for 9,000 turns

-FFT of vertical position for each bunch

- Vertical position peak oscillation frequency at $\sim 260.3 \mathrm{kHz}$.
- Many oscillation frequencies show up at power comparable to that of the main oscillation frequency.
-The vertical tune was measured as 255.4 kHz at $12: 54 \mathrm{pm}$ on $1 / 4 / 07$, with $I+=60 \mathrm{~mA}, I-=50 \mathrm{~mA}$.

e+ vertical motion-Power and Frequency of Oscillation, High I File:935 $\mathrm{I}_{\mathrm{e}+}=2.8 \mathrm{~mA} /$ bunch File:935, FFT of e+ Vertical Position CESR-C bunches (most common frequency $\sim 260 \mathrm{kHz}$ )

-Trains 1 and 6-9 share the same peak oscillation frequency (260.3kHz), near the measured vertical tune.
-Note that a small peak in the vertical tune measurement appears to be very near to 260.3 kHz (see previous slide). -Bunches in trains 2-5 have widely varying peak oscillation frequencies. The power of the 260.3 kHz line decreases drastically for these bunches, to near the noise level for most cases.
e+ Vertical Position Oscillation Frequency at Peak Power File:935 I $=52.52 \mathrm{~mA}(\sim 2.3 \mathrm{~mA} /$ bunch $), \mathrm{I}^{+}=64.03 \mathrm{~mA}(\sim 2.8 \mathrm{~mA} /$ bunch $)$

e+ vertical motion-Power and Frequency of Oscillation, Low I File:938 $\mathrm{I}_{\mathrm{e}-}=2.1 \mathrm{~mA} / \mathrm{bunch}$
FFT of e+ Vertical Position CESR-C bunches (most common frequency $\sim 260 \mathrm{kHz}$ )

- Trains 1 and 6-9 share the same peak oscillation frequency ( 260.3 kHz ).
- Peak oscillation frequencies vary between trains 2-5, but in all but the last bunch of train 4, each bunch in the train displays the same peak oscillation frequency.


Peak oscillation frequencies, corresponding to the peak powers above.
e+ FFT power dependence on vertical position oscillation amplitude- High I


Bunch 1
Peak Power=628@260.3kHz $y_{\text {avg }}=0.616 \mathrm{~mm}$ Std $=0.020 \mathrm{~mm}$


Bunch 4
Peak Power=376@318.6kHz
$y_{\text {avg }}=0.583 \mathrm{~mm}$
Std $=0.021 \mathrm{~mm}$

File:935 $I_{e^{+}}=2.8 \mathrm{~mA} /$ bunch

- Many frequencies are apparent, but they do not appear to correlate with the amplitude of vertical position oscillation.


Bunch 22
Peak Power=125@260.3kHz
$y_{\text {avg }}=0.607 \mathrm{~mm}$
Std $=0.018 \mathrm{~mm}$



e+ FFT power dependence on vertical position oscillation amplitude- Low I


Bunch 1
Peak Power=745@260.3kHz $y_{\text {avg }}=0.647 \mathrm{~mm}$ Std $=0.023 \mathrm{~mm}$

File $938 \mathrm{I}_{\mathrm{e}+}=2.1 \mathrm{~mA} /$ bunch
-The oscillation amplitude appears to be relatively constant.


Bunch 11
Peak Power=299@275.4kHz
$y_{\text {avg }}=0.641 \mathrm{~mm}$
Std $=0.023 \mathrm{~mm}$



Peak Power=100@260.3kHz
$y_{\text {avg }}=0.641 \mathrm{~mm}$
Std $=0.019 \mathrm{~mm}$

e+ vertical position oscillation amplitude
e+ 1,7X3,1 CESR-C Operation File:935
Correlation of STD Vertical Position vs. FFT Power


High I File: $935 \mathrm{I}_{\mathrm{e}^{+}}=2.8 \mathrm{~mA} /$ bunch

Low I File:938 $\mathrm{I}_{\mathrm{e}^{+}}=2.1 \mathrm{~mA} /$ bunch $\qquad$
There is no apparent correlation between the peak power of vertical position oscillation and the standard deviation in the vertical position measurement. Note: the change in standard deviation is small in these plots.
e+ 1,7X3,1 CESR-C Operation File:938
Correlation of STD Vertical Position vs. FFT Power


$\mathrm{e}^{+} \sigma_{\mathrm{v}}$ along the train

- $\sigma_{v} 10,000$ turns for 23 bunches.
- Vertical beam size tends to grow along the train, except in trains 7 and 8 .
-There is a general increase in $\sigma_{v}$ along all trains, until train 8.

High I File:935 $\mathrm{I}_{\mathrm{e}+}=2.8 \mathrm{~mA} /$ bunch (movie)
Low I File:938 $I_{e^{+}}=2.1 \mathrm{~mA} /$ bunch (movie)

e+ high frequency $\sigma_{v}$ oscillation frequency-FFT of $\sigma_{v}$ for 10,000 turns


High I File:935 $\mathrm{I}_{\mathrm{e}+}=2.8 \mathrm{~mA} / \mathrm{bunch}$

BSM23E935 results


- FFT of $\sigma_{v}$ for all 23 bunches
- No clear oscillation frequency in the vertical beam size.

BSM23E938 results1


Low I File:938 $I_{e^{+}}=2.1 \mathrm{~mA} /$ bunch BSM23E938 results


$\mathrm{e}+$ high frequency $\sigma_{v}$ oscillation frequency- FFT of $\sigma_{v}$ - Low I


Peak Power=117@56kHz
$\sigma_{\mathrm{v}}=0.298 \mathrm{~mm}$
Std $=0.024 \mathrm{~mm}$



- At low I, there appears to be some relationship between bunch number and the standard deviation in vertical position.
- There is no apparent relationship between bunch number and the standard deviation in the vertical beam size.


$A^{*} \exp P\left(\left(1(-B) /(\operatorname{sat}(2))^{*} C\right)\right)^{2}++D$

III. e- turn-by-turn measurements
e- single bunch vertical bunch distributions from the PMT array.
- 10,000 turns of 23 e+/e- bunches.
- High I File:936 $\mathrm{I}_{\mathrm{e}-}=2.3 \mathrm{~mA} / \mathrm{bunch}$
$A^{*} \exp \left(-\left((x-B) /\left(\text { sqrt }(2)^{*} C\right)\right)^{2}\right)+D$




## e- Vertical Position

- e-mean vertical position along the train-offset was included to have the plots coincide.
- Mean vertical position for 10,000 turns for 23 bunches.
-The mean vertical position increases along the train for low current. It follows this trend for the high current with the exception of trains 2 and 3.

High I File:936 $\mathrm{I}_{\mathrm{e}-}=2.3 \mathrm{~mA} / \mathrm{bunch}$ (movie) Low I File:937 $\mathrm{I}_{\mathrm{e}-}=1.9 \mathrm{~mA} / \mathrm{bunch}$ (movie) Low I File:939 $\mathrm{I}_{\mathrm{e}=}=1.9 \mathrm{~mA} / \mathrm{bunch}$ (movie)


e- high frequency vertical position oscillation-FFT of vertical position for 10,000 turns


- FFT of the vertical position.
- Vertical oscillation detected only at low power. Highest power observed is near the vertical tune.

e- high frequency vertical position oscillation-Power and Frequency of Oscillation

e- high frequency vertical position oscillation - FFT of vertical position - High I (file 936)



BSM23W936 results 11


Peak Power=462@260.3kHz
$y_{\mathrm{avg}}=1.72 \mathrm{~mm}$
Std $=0.024 \mathrm{~mm}$
File:936 $\mathrm{I}_{\mathrm{e}}=2.3 \mathrm{~mA} /$ bunch
-Noise does not appear to correlate with FFT power.



e- high frequency vertical position oscillation - FFT of vertical position - Low I (file 937)

e- vertical position oscillations amplitude correlation FFT Power
e- 1,7X3,1 CESR-C Operation File:936
Correlation of STD Vertical Position vs. FFT Power


There does not appear to be a direct correlation between the FFT Power of mean position oscillations and the standard deviation in the mean position.
e- 1,7X3,1 CESR-C Operation File:937

e- 1,7X3,1 CESR-C Operation File:939
Correlation of STD Vertical Position vs. FFT Power



High I File:936 $\mathrm{I}_{\mathrm{e}-}=2.3 \mathrm{~mA} /$ bunch (movie)


Low I File:937 $\mathrm{I}_{\mathrm{e}-}=1.9 \mathrm{~mA} / \mathrm{bunch}$ (movie) Low I File:939 $\mathrm{I}_{\mathrm{e} .}=1.9 \mathrm{~mA} / \mathrm{bunch}$ (movie)


e- high frequency $\sigma_{v}$ oscillation frequency-FFT of $\sigma_{v}$ for 10,000 turns



movies
Low I File:937 $\mathrm{I}_{\mathrm{e}-}=1.9 \mathrm{~mA} /$ bunch

High I File:936 $I_{e}=2.3 \mathrm{~mA} /$ bunch


$\rangle$
Low I File:939 $\mathrm{I}_{\mathrm{e}-}=1.9 \mathrm{~mA} /$ bunch





High I File:936 $\mathrm{I}_{\mathrm{e}-}=2.3 \mathrm{~mA} / \mathrm{bunch}$
$e-\sigma_{v}$ oscillation-Power and Frequency of Oscillation
FFT of e- CESR-C bunches


Low I File:937 $\mathrm{I}_{\mathrm{e}-}=1.9 \mathrm{~mA} / \mathrm{bunch}$

- Oscillation at 260.3 kHz is prominent in trains $5-8$, but the strength of that signal is very low in the other trains, compared to their strongest signals.
e- $\sigma$ : Most Prominent Oscillation Frequencies
File: $936 \mathrm{I}_{\mathrm{e} .}=52.48 \mathrm{~mA}(\sim 2.3 \mathrm{~mA}$ bunch $), \mathrm{I}_{\mathrm{e}+}=63.95 \mathrm{~mA}(\sim 2.8 \mathrm{~mA}$ bunch $)$

e. Vertical Position Oscillation Frequency File:937 $\mathrm{I}_{\mathrm{e} .}=42.85 \mathrm{~mA}(\sim 1.9 \mathrm{~mA}$ bunch $) \mathrm{I}_{\mathrm{e}^{+}}=48.29 \mathrm{~mA}(\sim 2.1 \mathrm{~mA}$ bunch $)$




Low I File:939 $\mathrm{I}_{\mathrm{e}-}=1.9 \mathrm{~mA} /$ bunch
$\downarrow$ $\downarrow$ ( $=0$



e- 1,7X3,1 CESR-C Operation File:936
STD of $\sigma$ vs. FFT Power

e- 1,7X3,1 CESR-C Operation File:937
STD of $\sigma_{\mathrm{v}}$ vs. FFT Power

- No clear correlation between $\sigma_{\mathrm{v}}$ oscillation amplitude (standard deviation of $\sigma_{v}$ ) and FFT power- coherent oscillation of $\sigma_{v}$ oscillation amplitude.
-At high current (file 936), there is a more marked increase in the beamsize standard deviation as the FFT power increases.
e- $\sigma_{v}$ oscillation amplitude Vs. FFT Power

e- 1,7X3,1 CESR-C Operation File:936
FFT Power vs. $\sigma$

e- 1,7X3,1 CESR-C Operation File:937
FFT Power vs. $\sigma$

$e-\sigma_{v}$ correlated with FFT Power
- No direct correlation between $\sigma_{v}$ oscillation and FFT power- $\sigma_{v}$ growth due to coherent instability


Files: 935, 936 Product of Vertical Beam Sizes


Files:938, 939 Product of Vertical Beam Sizes


Files:935, 936 Sum of Vertical Beam Sizes



- It is evident from plots of e+ and evertical beam size that when e+ $\sigma_{v}$ increases, e- $\sigma_{v}$ decreases; however, the sum and product of the e- and e+ beam sizes do not reflect this relationship. The e-values of $\sigma_{v}$ dominate.


## IV Summary

During CESR-c colliding beams the following was measured:
e+ turn-by-turn vertical dynamics:

- A vertical position shift of the bunch distribution of up to 0.03 mm , was measured along the three bunch train. Many oscillation frequencies are evident in the vertical position. The dominant oscillation frequency is at the vertical tune.
- A vertical beam size growth along the three bunch train was measured. No clear oscillation frequency of the vertical beam size is evident.
e- turn-by-turn vertical dynamics:
- A vertical position shift is detected over the three bunch train in the opposite direction as the e+ bunches. The vertical position oscillation has two frequencies, a low frequency component at $f_{\text {low }} \sim 333$ turns, and a high frequency oscillation at the vertical tune.
-The e-vertical beam size decreases along the three bunch train which is directly opposite to the vertical beam size growth for the e+ bunches. Several oscillation frequencies were detected in the vertical beam size spectrum most notably at the vertical tune.

