e+ Vertical Damping Time

Used pulsed beam bumpers, operating at 15Hz, for beam excitation and damping time measurement.

Vertical Beam Size (pixels)

PMT measured σ_v for 180K turns with 100 turn average.

Beam excitation occurs every ~26K turns.

Data taken on 4/24/2006.

After each excitation σ was χ^2 fit to the following curve

$$\sigma^{2}(t) = \left(\sigma_{exc}^{2} - \sigma_{eq}^{2}\right)e^{-\frac{2t}{\tau}} + \sigma_{eq}^{2}$$

where σ_{eq} and σ_{exc} are the equilibrium and excited beam sizes respectively and τ is the damping time.

The damping time was determined two ways: 1) Using the measured equilibrium beam size as a constant. 2) Using equilibrium beam size as a fit parameter.

Measured vertical damping time at four currents: I=0.2, 0.5, 1, and 2mA.

Equilibrium vertical beam size at I=2mA is σ_{eq} =3.678+/-0.005 pixels. The damping time is highly dependent on the equilibrium beam size!

Result	ts Method 1	Method 2	_
I (mA)	$\tau_{\rm y}$ (ms)/measured $\sigma_{\rm eq}({\rm pixels})$	$ au_{y}$ (ms)/ fit $\sigma_{ m eq}$ (pixels)	
2	36.8 ± 2.3 / 3.68	21.4 ± 4.1 / 4.01	
1	47.8 ± 9.0 / 3.57	31.5 ± 15.5 / 3.91	
0.5	32.6 ± 4.2 / 3.72	39.1 ± 20.6 / 3.62	
0.2	54.4 ± 11.1 / 3.6	67.1 ± 34.1 / 3.53	
0.2	39.0 ± 9.8 / 4.1		

Equilibrium beam size was measured twice at I=0.2mA.

Summary

- Using the PMT to measure the pulsed bump excitation is a viable method to measure the vertical damping time.
- From this data set there is no apparent current dependence on damping time.
- The equilibrium beam size is crucial for the measurement. It would be beneficial to reduce the excitation period to achieve the equilibrium beam size.
- Fitting the damping time with the equilibrium beam size included as a fit parameter increased error and caused a large spread in measured damping times. This may be a result of short time intervals between beam excitations.