e-/e+ Vertical Beam Dynamics with 6 and 12Wigglers On

Content
I. Introduction
II. $e+6$ wigglers on/ 6 wigglers off
III. e+ 12 wigglers on
IV. e- 6 wigglers on/6 wigglers off
V. e- 12 wigglers on
R. Holtzapple, G.Codner, M.Palmer, and E.Tanke

I. Introduction:

Goal: Examine e+/e- turn-by-turn vertical beam dynamics for 45 bunch train at CESR-c operating point.
e+/e- vertical beam dynamics were measured in:

- 6 wiggler magnet configuration-14-15E/W on, 19E/W triplets are off
- 12 wiggler magnet configuration-14-15E/W and 19E/W triplets are on -Vertical feedback was adjusted under certain current conditions.

PMT calibration for the analysis is $10 \mathrm{~mm} /$ pixel for both e- and e+. The calibration was measured to be $10.4 \mathrm{~mm} /$ pixel for $\mathrm{e}+$ and $8.6 \mathrm{~mm} /$ pixel for e - on $9 / 18 / 2006$.
e+/e- vertical distributions

$$
\text { e- } 12 \text { wigglers on } \mathrm{I}=1.25 \mathrm{~mA} / \mathrm{bunch} \text { (movie) }
$$

$e+12$ wigglers on $\mathrm{I}=0.84 \mathrm{~mA} /$ bunch (movie)

4 $\mathrm{I}=0.25 \mathrm{~mA} / b u n c h ~ F i l e: 413$ Vert Fdbk(00-1 $\Delta \mathrm{Q} \sim 1.4 \mathrm{kHz}$
v I=0.63mA/bunch File:418 Vert Fdbkelo-600 $\Delta \mathrm{Q}$ ح $\sim 2.6 \mathrm{kHz}$

- I=0.65mA/bunch File:409 Vert Fdbk@-1 $\Delta \mathrm{Q} \underset{\sim}{\sim} \sim 2.1 \mathrm{kHz}$
- I=0.71mA/bunch File:404 Vert Fdbk@-1 $\Delta Q_{y} \sim 1.9 \mathrm{kHz}$
- I=0.75mA/bunch File:416 Vert Fdbk(0)-1 $\Delta Q \quad \sim 3.1 \mathrm{kHz}$

Significant tune shift, Q_{y} and Q_{x}, along the 45 bunch trains

6 Wigglers On 6 Wigglers Off

- I=0.25mA/bunch File:411 Vert Fdbk@-1

4 I=0.25mA/bunch File:413 Vert Fdbb(0)-1
v I=0.63mA/bunch File:418 Vert Fdbk-600

- $\mathrm{I}=0.65 \mathrm{~mA} / \mathrm{bunch}$ File:409 Vert Fdbk- 1
- I=0.71mA/bunch File:404 Vert Fdbk@-1
- I=0.75mA/bunch File:416 Vert Fdbk-1
e+
6 Wigglers On 6 Wigglers Off

Bunch current is not uniform along the train at high current.

- File:545 I=0.25mA/bunch Vert Fdbk(0)-1
- Five $539 \mathrm{I}=070 \mathrm{~m}$ Abur Ver Fun 100 - File:542 I=0.60mA/bunch Vert Fdbk(0)-1
- File: $548 \mathrm{I}=0.75 \mathrm{~mA} / \mathrm{bunch}$ Vert Fdbl(0)- 1 * File:550 I=0.70mA/bunch Vert Fdbk(0)-1255 - File:552 I $=0.64 \mathrm{~mA}$ A/bunch Vert Fdblel -600
e+
6 Wigglers Off, 6 Wigglers On Single Turn Beam Size

啫

Unstable outliers

File 548 bunch 34 Movie

- File: $545 \mathrm{I}=0.25 \mathrm{~mA} / \mathrm{bunch}$ Vert $\mathrm{Fdbk}(0)-1$
- File:539 I=0.70mA/bunch Vert Fdbs(2)-1000 - File:542 I=0.60mA/bunch Vert Fdbk(0)-1
- File:548 I=0.75mA/bunch Vert Fdbk(0)-1
* File:550 I=0.70mA/bunch Vert Fdbk(0)-1255
* File:552 I=0.64mA/bunch Vert Fdbl(a)-600

Bunch

6 Wigglers Off, 6 Wigglers On
Single Turn Mean Vertical Position

FFT Vertical position $\mathrm{I}_{\mathrm{e}+}=0.25 \mathrm{~mA} /$ bunch File:545 e+ 6 wigglers on, 6 wigglers off Vert. Fdbck@-1
e+ 6 Wigglers Off, 6 Wigglers On
 File:545 I=0.25mA/bunch Vert Fdbck@-1

-The vertical position oscillation frequency, $f_{\text {osc }}=235.8 \mathrm{kHz}$, is determined from the FFT of the vertical position.
-There is a correlation between standard deviation of the vertical position (vertical position oscillation amplitude) and FFT power of mean position.

FFT $\sigma_{\mathrm{v}} \mathrm{I}_{\mathrm{e}+}=0.25 \mathrm{~mA} / \mathrm{bunch}$
File:545 e+ 6 wigglers on, 6 wigglers off Vert. Fdbck@-1
e+ 6 Wigglers Off, 6 Wigglers On
File:545 I=0.25mA/bunch Vert Fdbck@-1

 Bunch

Bunch 2 movie
-A dramatic jump in vertical beam size occurs at bunch 3 and slow decays by bunch 11. This jump correlates with a peak in FFT spectrum at $\mathrm{f}=235.8 \mathrm{kHz}$.

- From bunch 11-45 there are only small fluctuations in σ_{v}.
- The standard deviation of $\sigma_{v}\left(\sigma_{v}\right.$ oscillation amplitude) is fairly constant along the train.

FFT Vertical position $\mathrm{I}_{\mathrm{e}+}=0.6 \mathrm{~mA} / \mathrm{bunch}$ File:542 e+ 6 wigglers on, 6 wigglers off
 Vert. Fdbck@-1
e+ 6 Wigglers Off, 6 Wigglers On File:542 I=0.60mA/bunch Vert Fdbck@-1

Bunch
-The vertical position oscillation frequency is $f_{\text {osc }}=235.8 \mathrm{kHz}$. The vertical position oscillation amplitude increased with bunch current and correlates with FFT power.

- Bunch 41 has a broad frequency spectrum.
e+ 6 Wigglers Off, 6 Wigglers On

FFT $\sigma_{\mathrm{v}} \mathrm{I}_{\mathrm{e}+}=0.6 \mathrm{~mA} / \mathrm{bunch}$
File:542 e+ 6 wigglers on, 6 wigglers off Vert. Fdbck@-1
e+ 6 Wigglers Off, 6 Wigglers On File: $542 \mathrm{I}=0.60 \mathrm{~mA} /$ bunch Vert Fdbck@-1

 Bunch
e+ 6 Wigglers Off, 6 Wigglers On

- From the FFT of σ_{v}, a broad frequency spectrum is detected for bunch 41. Bunch 41 has a large vertical position and σ_{v} oscillation amplitude.
-A 45% decrease in σ_{v} for bunch 3 (compared to $I=0.25 \mathrm{~mA} /$ bunch).
- σ_{v} growth along the 45 bunch trains starts at bunch 23.

At the onset of the beam blow-up at bunch 41, two peaks in the FFT spectrum is observed at $\mathrm{f}_{\text {osc }}=236.6 \mathrm{kHz}$ (cycles/turn $=0.396$) and $f_{\text {osc }}=307.2 \mathrm{kHz}$ (cycles/turn=0.213).

Bunch 36-movie

Bunch 41-movie

Bunch 42-movie

Secondary peak

Turn on vertical feedback:

- Vertical feedback reduces the vertical position oscillation amplitude. The oscillation amplitude correlates with FFT power.
-The vertical position oscillation frequency has two peaks, at $\mathrm{f}_{\text {osc }}=236.6 \mathrm{kHz}$ (0.396 cycles/turn), and $\mathrm{f}_{\mathrm{osc}}=354.9 \mathrm{kHz}$ (0.091 cycles/turn).

FFT Vertical position $\mathrm{I}_{\mathrm{e}+}=0.63 \mathrm{~mA} / \mathrm{bunch}$ File:552 e+ 6 wigglers on, 6 wigglers off Vert. Fdbck@-600

e+ 6 Wigglers Off, 6 Wigglers On

File:552 I=0.63mA/bunch Vert Fdbck@-600

FFT $\sigma_{v} I_{\mathrm{e}+}=0.63 \mathrm{~mA} / \mathrm{bunch}$
File:552 e+ 6 wigglers on, 6 wigglers off Vert. Fdbck@-600
e+ 6 Wigglers Off, 6 Wigglers On File:552 I=0.63mA/bunch Vert Fdbck@-600

-FFT spectrum peak ($\mathrm{f}_{\text {osc }}=236.6 \mathrm{kHz}$) correlates with maximum σ_{v} measured for bunch 3. Feedback reduces bunch $3 \sigma_{v}$ slightly. -Vertical feedback eliminated the σ_{v} growth near the end of the train.
e+ 6 Wigglers on/off

