

FFT Vertical position $\mathrm{I}_{\mathrm{e}+}=0.84 \mathrm{~mA} /$ bunch File:560 e+ 12 wigglers on
Vert. Fdbck@-600
e+ 12 Wigglers On

e+ 12 Wigglers On
File:560 I=0.84mA/bunch Vert Fdbck@-600

Turn on vertical feedback:

-Large reduction in vertical position oscillation amplitude ($\mathrm{f}_{\text {osc }}=234.6 \mathrm{kHz}$). Oscillation amplitude correlates with FFT spectrum that grows along the train.

FFT-Power

FFT $\sigma_{\mathrm{v}} \mathrm{I}_{\mathrm{e}+}=0.84 \mathrm{~mA} /$ bunch File:560 e+ 12 wigglers on Vert. Fdbck@-600
e+ 12 Wigglers On

- σ_{v} growth occurs at bunch 25 (@bunch 20 w/o feedback).
- No clear σ_{v} oscillation frequency is denoted in the FFT spectrum.

e+ 12 Wigglers On $\mathrm{I}=0.84 \mathrm{~mA} / \mathrm{bunch}$

FFT Vertical position $\mathrm{I}_{\mathrm{e}+}=0.90 \mathrm{~mA} /$ bunch File:558 e+ 12 wigglers on
Vert. Fdbck@-1130
e+ 12 Wigglers On
File:558 I=0.9mA/bunch Vert Fdbck@-1130

e+ 12 Wigglers On
File:558 I=0.90mA/bunch Vert Fdbck@-1130

Increase current and feedback:
-Vertical position oscillation amplitude is reduced ($\mathrm{f}_{\text {osc }}=234.2 \mathrm{kHz}$). Amplitude correlates with FFT power.

FFT $\sigma_{v} I_{\mathrm{e}+}=0.90 \mathrm{~mA} /$ bunch File:558 e+ 12 wigglers on Vert. Fdbck@-1130
e+ 12 Wigglers On
File:558 I=0.9mA/bunch Vert Fdbck@-1130

Bunch
At high I with feedback on:

- σ_{v} growth starts at bunch 22. No distinct σ_{v} oscillation frequency is apparent in the beam spectrum.

- No significant change in σ_{v} along the 45 bunch train due to the increase vertical feedback.

Summary e+ vertical dynamics with 12 wigglers on

- The vertical tune shift along the 45 bunch train increases with current.
$\square \Delta \mathrm{Q}_{\mathrm{y}}(12$ wigglers $)>\Delta \mathrm{Q}_{\mathrm{y}}(6$ wigglers on/off $)$.
-At low current, the σ_{v} blows-up for bunches 3-7. As the bunch current is increased, σ_{v} for bunches 3-7 decreases.
-A coherent vertical position oscillation along the 45 bunch train is always present (at all currents measured). The position oscillation amplitude increases with current and decreases with vertical feedback. The FFT power from the vertical position correlates with the vertical oscillation amplitude.
- As the bunch current is increased, σ_{v} growth along the 45 bunch train occurs. If vertical feedback is turned off, the vertical position oscillation amplitude increases and results in a significant increase in the σ_{v}. This σ_{v} blow-up appears to be incoherent due to the lack of structure in the FFT spectrum.
e+ Vertical Beam Size
$\mathrm{I}=0.25 \mathrm{~mA} /$ bunch Vertical Feedback $@-1$
$e+$ comparison of σ_{v} with wigglers on/off
- σ_{v} blow-up occurs at bunch 3 with wigglers on/off.
-The equilibrium σ_{v} is larger with 12 wigglers on.
- $\sigma_{\mathrm{v}}(12$ wigglers $)>\sigma_{\mathrm{v}}(6$ wigglers on/off $)$ - σ_{v} reduction for bunch 3 with current.
- σ_{v} growth occurs at bunch 16 with 6 wigglers on/off and at bunch 31 with 12 wigglers on. Significant incoherent contribution with 6 wigglers on/off.

- $\sigma_{v}(12$ wigglers on $)>\sigma_{v}$ (6 wigglers on/off).
- σ_{v} growth along the train occurs roughly at the same location (~bunch 31).
- I=0.32mA/bunch File:397 Vert. Fdbk@400 $\Delta \mathrm{Q}_{\mathrm{y}}=1.3 \mathrm{kHz}$
- I $=0.84 \mathrm{~mA} /$ bunch File: 399 Vert. Fdbk($0400 \Delta \mathrm{Q}_{\mathrm{y}}=0.9 \mathrm{kHz}$
- I=1.32mA/bunch File: 395 Vert. Fdbk@ $400 \Delta \mathrm{Q}_{\mathrm{y}}=0.51 \mathrm{~Hz}$

e- 6 Wigglers Off/ 6 Wigglers On

Average Single Turn Beam Size

Vertical position change and σ_{v} growth occur at the same location along the 45 bunch train.

Summary of the vertical position and σ_{v} along the 45 bunch trains with 6 wiggler magnets on/off.
e- 6 Wigglers Off/ 6 Wigglers On Average Single Turn Mean Vertical Position

FFT Vertical position $\mathrm{I}_{\mathrm{e}}=0.25 \mathrm{~mA} /$ bunch File:532 e- 6 wigglers on, 6 wigglers off Vert. Fdbck@400
e- 6 Wigglers On/6 Wigglers Off

e- 6 Wigglers Off, 6 Wigglers On

- No large vertical position oscillation for bunch 3 .
-Vertical position oscillation amplitude increases along the train at ~bunch 29. The amplitude correlates well with FFT power ($\mathrm{fosc}=237.4 \mathrm{kHz}$)

$\mathrm{FFT} \sigma_{\mathrm{v}} \mathrm{I}_{\mathrm{e}-}=0.25 \mathrm{~mA} / \mathrm{bunch}$
File:532 e- 6 wigglers on, 6 wigglers off Vert. Fdbck@400
e- 6 Wigglers On/6 Wigglers Off
File:532 I=0.25mA/bunch Vert Fdbck@400

- σ_{v} growth occurs at ~bunch 29 with no clear oscillation frequency
 in the vertical beam size except for the last few bunches.
-No distinct σ_{v} oscillation frequency is apparent (incoherent instability).

FFT Vertical position $\mathrm{I}_{\mathrm{e}}=0.75 \mathrm{~mA} /$ bunch File:535 e- 6 wigglers on, 6 wigglers off Vert. Fdbck@400
e- 6 Wigglers On/6 Wigglers Off File:535 I=0.75mA/bunch Vert Fdbck@400

e- 6 Wigglers Off, 6 Wigglers On

Vertical position movie

Increase the current per bunch with feedback constant:
-Now two vertical position oscillation frequencies are present, $\mathrm{f}_{\text {osc }}=237 \mathrm{kHz}(0.393$ cycles/turn) and $\mathrm{f}_{\text {osc }}=206.9 \mathrm{kHz}$ (0.47 cycles/turn). The oscillation amplitude increase with FFT power.

FFT $\sigma_{v} I_{\mathrm{e}}=0.75 \mathrm{~mA} / \mathrm{bunch}$
File:535 e- 6 wigglers on, 6 wigglers off Vert. Fdbck@400
e- 6 Wigglers On/6 Wigglers Off

- Significant σ_{v} growth along the train starting at bunch 30 with no σ_{v} oscillation frequency in the FFT spectrum until the last 3 bunches.

FFT Vertical position $\mathrm{I}_{\mathrm{e}-}=1.25 \mathrm{~mA} /$ bunch File:528 e- 6 wigglers on, 6 wigglers off Vert. Fdbck@400

e- 6 Wigglers On/6 Wigglers Off
File:528 I=1.25mA/bunch Vert Fdbck@400
e- 6 Wigglers Off, 6 Wigglers On
Increasing the current results in:
Vertical position movie

- A vertical position oscillation amplitude increase at $\mathrm{f}_{\mathrm{osc}}=236.2 \mathrm{kHz}$ (0.395 cycles/turn) and 202.7 kHz (0.47 cycles/turn).
-Vertical position changes at bunch 34. The oscillation amplitude correlates with FFT power.

File:528 I=1.25mA/bunch Vert Fdbck@400

FFT $\sigma_{\mathrm{v}} \mathrm{I}_{\mathrm{e}}=1.25 \mathrm{~mA} / \mathrm{bunch}$
File:528 e- 6 wigglers on, 6 wigglers off Vert. Fdbck@400

- σ_{v} growth along the train starts at bunch 30 with no clear frequency of oscillation for the vertical beam size-Incoherent oscillation.
σ_{v} growth $(@ \mathrm{I}=0.75 \mathrm{~mA} / \mathrm{bunch})>\sigma_{\mathrm{v}}$ growth $(@ \mathrm{l}=1.25 \mathrm{~mA} /$ bunch $)$.
e- 6 Wigglers On, 6 Wigglers Off
Vertical Feedback@400

- For all bunch currents, σ_{v} growth starts at \sim bunch 30 .
- $\sigma_{v}(\mathrm{I}=0.75 \mathrm{~mA} /$ bunch $)>\sigma_{\mathrm{v}}(\mathrm{I}=1.25 \mathrm{~mA} / \mathrm{bunch})>\sigma_{\mathrm{v}}(\mathrm{I}=0.25 \mathrm{~mA} / \mathrm{bunch})$

Summary e- vertical dynamics with 6 wigglers on/off

- The vertical tune shift along the 45 bunch train initially is negative and then turns positive. The positive tune shift correlates with the vertical beam size growth along the train (~bunch 30).
-The vertical position oscillation is a coherent oscillation that is present at all currents measured. The FFT vertical position power correlates with the vertical oscillation amplitude.
- σ_{v} growth occurs along the train, which starts at bunch 30 , is due to a incoherent oscillation and is present at all currents measured. σ_{v} growth coincides with a shift in the vertical position in the bunches.

