- $\mathrm{I}=0.32 \mathrm{~mA} / \mathrm{bunch}$ File: 433 Vert. Fdbk@0
- I=0.77mA/bunch File:437 Vert Fdbk@0
- $\mathrm{I}=0.71 \mathrm{~mA} / \mathrm{bunch}$ File: 438 Vert Fdbk(0)400
- I=1.33mA/bunch File:439 Vert Fdbk(0400
v. e- 12 wigglers on

12 Wigglers On

Slight positive shift in Q_{y} along the 45 bunch train.

- $\mathrm{I}=0.22 \mathrm{~mA} /$ bunch File:434 Vert. Fdbk@400
- $\mathrm{I}=0.32 \mathrm{~mA} /$ bunch File:433 Vert. $\mathrm{Fdbk} @ 0$
- I $=0.77 \mathrm{~mA} / b u n c h ~ F i l e: 437$ Vert Fdbk(0)
- $\mathrm{I}=0.71 \mathrm{~mA} / \mathrm{bunch}$ File: 438 Vert $\mathrm{Fdbk}(0) 400$

12 Wigglers On

Bunch
e- 12 Wigglers On
Average Single Turn Beam Size

- MeanAv file:572 I=0.25mA Vert Fdbk@0
- MeanAv file:574 I=0.25mA Vert Fdbk(a/d 400
- MeanAv file:578 I=0.75mA Vert Fdbk(@400
- I=0.22mA/bunch File:434 Vert. Fdbk(0)400
- I=0.32mA/bunch File:433 Vert. Fdbk@0
- I=0.77mA/bunch File:437 Vert Fdbk(0)
- $\mathrm{I}=0.71 \mathrm{~mA} /$ bunch File: 438 Vert $\mathrm{Fdbk} @ 400$
- I=1.33mA/bunch File:439 Vert Fdbk@400

Non-uniform bunch current along the 45 bunch train at high current.

FFT Vertical position $\mathrm{I}_{\mathrm{e}-}=0.25 \mathrm{~mA} / \mathrm{bunch}$ File:572 e- 12 wigglers on
Vert. Fdbck@0
e- 12 Wigglers On
File:572 I=0.25mA/bunch Vert Fdbck@0

e- 12 Wigglers On
Low I with vertical feedback off:
-Vertical position oscillation occurs at bunch 12 ($\mathrm{f}_{\mathrm{osc}}=237.8 \mathrm{kHz}$) and the oscillation amplitude correlates with FFT power.
-The oscillation dies out near the end of the train (~bunch 40).

FFT Power

FFT $\sigma_{v} \mathrm{I}_{\mathrm{e}}=0.25 \mathrm{~mA} / \mathrm{bunch}$
File:572 e- 12 wigglers on
Vert. Fdbck@0
e- 12 Wigglers On
File:572 I=0.25mA/bunch Vert Fdbck@0

- σ_{v} growth along the train starts at \sim bunch 10. Two oscillation frequencies are presents in the beam spectrum at $\mathrm{f}_{\mathrm{osc}}=237.8 \mathrm{kHz}$ (0.391 cycles/turn) and 305.3 kHz (0.218 cycles/turn).
-A broad beam spectrum is observed for bunches 25 and 34 which correlates with the peak in σ_{v}.

FFT Vertical position $\mathrm{I}_{\mathrm{e}}=0.25 \mathrm{~mA} /$ bunch File:574 e- 12 wigglers on
Vert. Fdbck@400
e- 12 Wigglers On
File: $574 \mathrm{I}=0.25 \mathrm{~mA} /$ bunch Vert Fdbck@400

e- 12 Wigglers On
At low I with vertical feedback
 on:

- Vertical position oscillation occurs later in the train (~bunch 26) and the oscillation amplitude correlates with FFT power (fosc=238.1kHz) but with a reduced amplitude.
- Again, the oscillation dies out near the end of the train (\sim bunch 44).

FFT $\sigma_{v} \mathrm{I}_{\mathrm{e}-}=0.25 \mathrm{~mA} / \mathrm{bunch}$ File:574 e- 12 wigglers on Vert. Fdbck@400

- σ_{v} growth along the train starts at \sim bunch 22. Three oscillation frequencies are presents in the beam spectrum at $\mathrm{f}_{\text {osc }}=238.1 \mathrm{kHz}$ (0.390 cycles/turn), 304.5 kHz (0.22
 cycles/turn), and 359.2 kHz ($0.08 \mathrm{cycles} /$ turn). Maximum σ_{v} correlates with maximum vertical oscillation amplitude.
- Wide frequency spectrum is not as evident with feedback on.

FFT Vertical position $\mathrm{I}_{\mathrm{e}}=0.75 \mathrm{~mA} /$ bunch File:578 e- 12 wigglers on Vert. Fdbck@400
e- 12 Wigglers On
File:578 I=0.75mA/bunch Vert Fdbck@400

At $\mathrm{I}=0.75 \mathrm{~mA} /$ bunch with vertical feedback on:

- Vertical position oscillation occurs at \sim bunch 26 in the FFT. The oscillation amplitude increases with FFT power
-Two oscillation frequencies are present, $\mathrm{f}_{\text {osc }}=237.8 \mathrm{kHz}$ (0.391cycles/turn) and 207.7 kHz (0.468cycles/turn).
e- 12 Wigglers On
File:578 I=0.75mA/bunch Vert Fdbck@400

FFT Power

$\mathrm{FFT} \sigma_{\mathrm{v}} \mathrm{I}_{\mathrm{e}-}=0.75 \mathrm{~mA} / \mathrm{bunch}$ File:578 e- 12 wigglers on Vert. Fdbck@400
e- 12 Wigglers On
File:578 I=0.75mA/bunch Vert Fdbck@400

Bunch

- σ_{v} growth along the train starts at two locations, at bunch 15 , and bunch 30. Many oscillation frequencies are presents in the beam spectrum.

- At higher current, σ_{v} growth along the train starts earlier and has a steeper slope. $\sigma_{v}(I=0.75 \mathrm{~mA} /$ bunch $)>\sigma_{\mathrm{v}}(\mathrm{I}=0.25 \mathrm{~mA} / \mathrm{bunch})$

FFT Vertical position $\mathrm{I}_{\mathrm{e}-}=1.25 \mathrm{~mA} /$ bunch File:555 e- 12 wigglers on
Vert. Fdbck@400
e- 12 Wigglers On

Increased current with vertical feedback
on:

- The vertical position oscillation amplitude increased. The oscillation amplitude correlates with FFT power.
- The vertical position initially decreases. At ~bunch 26 the vertical position increases.
-Two oscillation frequencies are present, $\mathrm{f}_{\text {osc }}=237.4 \mathrm{kHz}$ (0.392 cycles/turn) and 207.3kHz (0.469 cycles/turn).
e- 12 Wigglers On

FFT $\sigma_{v} \mathrm{I}_{\mathrm{e}-}=1.25 \mathrm{~mA} / \mathrm{bunch}$
File:555 e- 12 wigglers on
Vert. Fdbck@400

- σ_{v} growth along the train has two slopes: 1) gradual increase-bunches 1-29 (coincides with vertical position decrease). 2) steeper slope-bunches 30-45 (coincides with vertical

- Several oscillation frequencies are presents in the beam spectrum.
- σ_{v} is larger at low current $(\mathrm{I}=0.75 \mathrm{~mA} / \mathrm{bunch})$ than at high current ($\mathrm{I}=1.25 \mathrm{~mA} / \mathrm{bunch}$).

- The vertical tune shift along the 45 bunch train is positive.
- The vertical position oscillation is always present (even with vertical feedback on). The oscillation amplitude correlates with FFT power.
- σ_{v} growth along the 45 bunch train is observed at all bunch currents with feedback on and off. Vertical feedback reduces the σ_{v} growth along the train and shifts the growth to a later point in the train. The vertical position oscillation correlates with σ_{v} growth.
$\mathrm{e}-\mathrm{I}=0.25 \mathrm{~mA} /$ bunch
Vertical Feedback@400

e-comparison of σ_{v} with wigglers on/off
- σ_{v} blow-up occurs earlier with 12 at wigglers on.
-The equilibrium σ_{v} is larger with 12 wigglers on.
- $\sigma_{\mathrm{v}}(12$ wigglers $)>\sigma_{\mathrm{v}}(6$ wigglers on/off $)$.

Bunch
e- $\mathrm{I}=0.75 \mathrm{~mA} /$ bunch
Vertical Feedback@400

- σ_{v} growth occurs earlier with 12 wigglers on.
- $\sigma_{\mathrm{v}}(12$ wigglers $)>\sigma_{\mathrm{v}}(6$ wigglers on/off $)$.

Bunch
- Initially,
$\sigma_{\mathrm{v}}(12$ wigglers on $)>\sigma_{\mathrm{v}}(6$ wigglers on/off $)$.
- σ_{v} growth along the train occurs roughly at the same location (~bunch 31).
- σ_{v} growth rate with 6 wigglers on/off is greater than with 12 wigglers on.

