e+/e- Vertical Beam Dynamics during CHESS Operation-Part II

I. Introduction
II. e+ turn-by-turn vertical dynamics
III. e- turn-by-turn vertical dynamics
IV. Summary
R. Holtzapple, J. Kern, and E.Tanke

November 16, 2006

I. Introduction

e+/e- CHESS

 9x6 PatternSingle bunch currents
Turn-by-turn vertical beam distribution measurements made at the top, middle, and bottom of a CHESS fill.

Similar analysis was done on 11/2/06.

$A^{*} \exp -\left((x-B) /\left(\text { sat }(2)^{*} \cdot \mathrm{C}\right)^{2}\right)^{2}+D$

e+ Bunch 6 Train 2
$1^{\text {st }}$ ten turns (movie)

II. e+ turn-by-turn measurements
e+ single bunch vertical bunch distributions from the PMT array.
-9,000 turns of all $54 \mathrm{e}+/ \mathrm{e}$ - bunches.

- High I File:924 $\mathrm{I}_{\mathrm{e}+}=3.7 \mathrm{~mA} / \mathrm{bunch}$
- Note difference in σ_{v}

e+ Vertical Position

- Mean vertical position for 9,000 turns for 54 bunches. -Low frequency vertical oscillation is denoted for all 54 bunches.

High I File:924 $\mathrm{I}_{\mathrm{e}+}=3.7 \mathrm{~mA} / \mathrm{bunch}$ (movie)

Medium I File:920
$\mathrm{I}_{\mathrm{e}+}=3.5 \mathrm{~mA} /$ bunch (movie)

Low I File:921
$\mathrm{I}_{\mathrm{e}+}=3.1 \mathrm{~mA} /$ bunch (movie)

e+ vertical position oscillation-FFT of vertical position for 9,000 turns

μ

High I File:924
$\mathrm{I}_{\mathrm{e}+}=3.7 \mathrm{~mA} / \mathrm{bunch}$ (movie)

BSM23E924 results54

Medium I File:920
$\mathrm{I}_{\mathrm{e}+}=3.5 \mathrm{~mA} /$ bunch (movie)

e+ high frequency vertical motion-FFT Power

e+ high frequency vertical motion-FFT Frequency of Oscillation

High I File:924 $\mathrm{I}_{\mathrm{e}+}=3.7 \mathrm{~mA} /$ bunch
e+ Vertical Position Oscillation Frequency
File:920 $\mathrm{I}_{\mathrm{e}-}=218.86 \mathrm{~mA}(4.1 \mathrm{~mA} / \mathrm{bunch}), \mathrm{I}_{\mathrm{e}+}=188.22 \mathrm{~mA}(3.5 \mathrm{~mA} / \mathrm{bunch})$

Medium I File:920 $\mathrm{I}_{\mathrm{e}+}=3.5 \mathrm{~mA} / \mathrm{bunch}$

- Oscillation frequency shift, $\Delta \mathrm{f}_{\mathrm{osc}}$, along the trains is current dependent.
- Large frequency jump is occasionally noted.

Low I File:921 $\mathrm{I}_{\mathrm{e}+}=3.1 \mathrm{~mA} / \mathrm{bunch}$

e+ FFT power dependence on vertical position oscillation amplitude-High I

e+ FFT power dependence on vertical position oscillation amplitude-Medium I

Bunch 1
Peak Power=37@244.7kHz
$y_{\text {avg }}=1.718 \mathrm{~mm}$
Std $=0.011 \mathrm{~mm}$

Bunch 12
Peak Power=85@245.6kHz
$y_{\text {avg }}=1.700 \mathrm{~mm}$
Std $=0.014 \mathrm{~mm}$

Bunch 24
Peak Power=165@195.2kHz
$y_{\text {avg }}=1.668 \mathrm{~mm}$
Std $=0.016 \mathrm{~mm}$
Many peaks and noise in FFT spectrum.

e+ FFT power dependence on vertical position oscillation amplitude-Low I

Bunch 9
Peak Power=407@244.0kHz
$y_{\text {avg }}=1.623 \mathrm{~mm}$
Std $=0.014 \mathrm{~mm}$

File:921 $I_{e_{+}}=3.1 \mathrm{~mA} /$ bunch

- Noisy FFT spectrum correlates to increased vertical position oscillation amplitude.

No real peak in FFT spectrum but noisy FFT spectrum background

e+ 9x6 CHESS Operation File:924
Correlation of STD Vertical Position vs. FFT Power
e+ 9x6 CHESS Operation File:920

e+ vertical position oscillation amplitude (standard deviation of vertical position) does not correlate with FFT power. Instead, the amplitude increases with FFT noise.

[^0]
[^0]: FFT Power

