
$e+\sigma_{v}$ along the train

- $\sigma_{v} 9,000$ turns for 54 bunches.
- Significant vertical beam size growth along each train-especially at high I

High I File:924

Medium I File:920
$\mathrm{I}_{\mathrm{e}+}=3.5 \mathrm{~mA} / \mathrm{bunch}$ (movie)

Low I File:921
$\mathrm{I}_{\mathrm{e}+}=3.1 \mathrm{~mA} / \mathrm{bunch}$ (movie)

e+ high frequency σ_{v} oscillation frequency-FFT of σ_{v} for 9,000 turns

$\mathrm{e}+$ high frequency σ_{v} oscillation frequency - FFT of $\sigma_{v}-$ High I

e+ high frequency σ_{v} oscillation frequency - FFT of $\sigma_{v}-$ Medium I

Peak Power=73@195.2kHz
$\sigma_{\mathrm{v}}=0.223 \mathrm{~mm}$
Std $=0.014 \mathrm{~mm}$

$\mathrm{e}+$ high frequency σ_{v} oscillation frequency- FFT of σ_{v} - Low I

Peak Power=55@286.2kHz
$\sigma_{\mathrm{v}}=0.159 \mathrm{~mm}$
Std $=0.009 \mathrm{~mm}$

Bunch 54
Peak Power=91@260.3kHz
$\sigma_{v}=0.221 \mathrm{~mm}$
Std=0.013mm

File $921 \mathrm{I}_{\mathrm{e}+}=3.1 \mathrm{~mA} / \mathrm{bunch}$

- At low I the vertical beam size growth is reduced (still correlates with FFT noise). σ_{v} is largest for last bunch in each train.

BSM23E921 resulis6

Bunch 6
Peak Power=204@260.3kHz $\sigma_{\mathrm{v}}=0.301 \mathrm{~mm}$ Std=0.018mm

Correlation of STD of σ_{v} vs. FFT Power $I_{\mathrm{e} .}=3.7 \mathrm{~mA} /$ bunch $\mathrm{e}+\sigma_{\mathrm{V}}$ OSCillation amplitud $\mathrm{C}_{\text {Correlation of } \operatorname{STD} \text { of } \sigma_{\mathrm{v}} \text { vs. FFT Power } I_{\mathrm{e}}=3.5 \mathrm{~mA} / \mathrm{bunch}}^{\mathrm{e}}$
$-\mathrm{STD}\left(\sigma_{v}\right)=0.0074489+4.9377 \mathrm{e}-5^{*} \mathrm{FFT}\left(\sigma_{v}\right) \quad \mathrm{R}=0.95184$

High I File:924
$\mathrm{I}_{\mathrm{e}+}=3.7 \mathrm{~mA} / \mathrm{bunch}$

FFT Power

$-\mathrm{STD}\left(\sigma_{v}\right)=0.0087826+5.4289 \mathrm{e}-5^{*} \mathrm{FFT}\left(\sigma_{v}\right) \quad \mathrm{R}=0.80505$

Low I File:921 $\mathrm{I}_{\mathrm{e}+}=3.1 \mathrm{~mA} / \mathrm{bunch}$ $\mathrm{e}+\sigma_{\mathrm{v}}$ oscillation amplitude (standard deviation of σ_{v}) correlates with FFT power.

$\left.A^{*} \exp -\left((x-B) /\left(\operatorname{sqtr}(2)^{*} C\right)\right)^{2}\right)+D$

e- Bunch 1 Train 1
$1^{\text {st }}$ ten turns (movie)
III. e- turn-by-turn measurements
e- single bunch vertical bunch distributions from the PMT array.

- 9,000 turns of all 54 e+/e- bunches.
- High I File:923 $\mathrm{I}_{\mathrm{e}-}=4.3 \mathrm{~mA} / \mathrm{bunch}$
- Note difference in σ_{v}
e- Bunch 5 Train 6
$1^{\text {st }}$ ten turns (movie)

