
RTEMS PowerPC Applications Supplement
Edition 4.6.99.3, for RTEMS 4.6.99.3

19 September 2003

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2005-07-05.19

COPYRIGHT c© 1988 - 2003.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

i

Table of Contents

Preface . 1

1 CPU Model Dependent Features. 3
1.1 Introduction . 3
1.2 CPU Model Feature Flags . 3

1.2.1 CPU Model Name . 3
1.2.2 Floating Point Unit . 3
1.2.3 Alignment . 3
1.2.4 Cache Alignment . 4
1.2.5 Maximum Interrupts . 4
1.2.6 Has Double Precision Floating Point . 4
1.2.7 Critical Interrupts . 4
1.2.8 Use Multiword Load/Store Instructions 4
1.2.9 Instruction Cache Size . 4
1.2.10 Data Cache Size . 4
1.2.11 Debug Model . 4
1.2.12 Low Power Model . 5

2 Calling Conventions . 7
2.1 Introduction . 7
2.2 Programming Model . 7

2.2.1 Non-Floating Point Registers . 7
2.2.2 Floating Point Registers . 7
2.2.3 Special Registers . 8

2.3 Call and Return Mechanism . 8
2.4 Calling Mechanism . 8
2.5 Register Usage . 9
2.6 Parameter Passing. 9
2.7 User-Provided Routines . 9

3 Memory Model . 11
3.1 Introduction . 11
3.2 Flat Memory Model . 11

4 Interrupt Processing . 13
4.1 Introduction . 13
4.2 Synchronous Versus Asynchronous Exceptions 13
4.3 Vectoring of Interrupt Handler . 13
4.4 Interrupt Levels . 14
4.5 Disabling of Interrupts by RTEMS. 14
4.6 Interrupt Stack . 15

ii RTEMS PowerPC Applications Supplement

5 Default Fatal Error Processing 17
5.1 Introduction . 17
5.2 Default Fatal Error Handler Operations . 17

6 Board Support Packages 19
6.1 Introduction . 19
6.2 System Reset . 19
6.3 Processor Initialization . 19

7 Processor Dependent Information Table 21
7.1 Introduction . 21
7.2 CPU Dependent Information Table . 21

8 Memory Requirements . 25
8.1 Introduction . 25
8.2 Data Space Requirements . 25
8.3 Minimum and Maximum Code Space Requirements 25
8.4 RTEMS Code Space Worksheet . 25
8.5 RTEMS RAM Workspace Worksheet . 27

9 Timing Specification . 29
9.1 Introduction . 29
9.2 Philosophy . 29

9.2.1 Determinancy . 29
9.2.2 Interrupt Latency . 30
9.2.3 Context Switch Time . 31
9.2.4 Directive Times . 31

9.3 Methodology . 31
9.3.1 Software Platform . 32
9.3.2 Hardware Platform . 32
9.3.3 What is measured? . 32
9.3.4 What is not measured? . 32
9.3.5 Terminology . 33

10 PSIM Timing Data . 35
10.1 Introduction . 35
10.2 Hardware Platform . 35
10.3 Interrupt Latency . 35
10.4 Context Switch . 35
10.5 Directive Times . 36
10.6 Task Manager. 37
10.7 Interrupt Manager . 38
10.8 Clock Manager . 38
10.9 Timer Manager . 38
10.10 Semaphore Manager . 39
10.11 Message Manager . 39

iii

10.12 Event Manager . 40
10.13 Signal Manager . 40
10.14 Partition Manager. 40
10.15 Region Manager . 41
10.16 Dual-Ported Memory Manager . 41
10.17 I/O Manager . 41
10.18 Rate Monotonic Manager . 41

11 DMV177 Timing Data 43
11.1 Introduction . 43
11.2 Hardware Platform . 43
11.3 Interrupt Latency . 43
11.4 Context Switch . 44
11.5 Directive Times . 44
11.6 Task Manager. 45
11.7 Interrupt Manager . 46
11.8 Clock Manager . 46
11.9 Timer Manager . 46
11.10 Semaphore Manager . 47
11.11 Message Manager . 47
11.12 Event Manager . 48
11.13 Signal Manager . 48
11.14 Partition Manager. 48
11.15 Region Manager . 49
11.16 Dual-Ported Memory Manager . 49
11.17 I/O Manager . 49
11.18 Rate Monotonic Manager . 49

Command and Variable Index 51

Concept Index . 53

iv RTEMS PowerPC Applications Supplement

Preface 1

Preface

The Real Time Executive for Multiprocessor Systems (RTEMS) is designed to be portable
across multiple processor architectures. However, the nature of real-time systems makes it
essential that the application designer understand certain processor dependent implementa-
tion details. These processor dependencies include calling convention, board support pack-
age issues, interrupt processing, exact RTEMS memory requirements, performance data,
header files, and the assembly language interface to the executive.

This document discusses the PowerPC architecture dependencies in this port of RTEMS.

It is highly recommended that the PowerPC RTEMS application developer obtain and
become familiar with the documentation for the processor being used as well as the speci-
fication for the revision of the PowerPC architecture which corresponds to that processor.

PowerPC Architecture Documents

For information on the PowerPC architecture, refer to the following documents available
from Motorola and IBM:

• PowerPC Microprocessor Family: The Programming Environment (Motorola Doc-
ument MPRPPCFPE-01).

• IBM PPC403GB Embedded Controller User’s Manual.
• PoweRisControl MPC500 Family RCPU RISC Central Processing Unit Reference

Manual (Motorola Document RCPUURM/AD).
• PowerPC 601 RISC Microprocessor User’s Manual (Motorola Document

MPR601UM/AD).
• PowerPC 603 RISC Microprocessor User’s Manual (Motorola Document

MPR603UM/AD).
• PowerPC 603e RISC Microprocessor User’s Manual (Motorola Document

MPR603EUM/AD).
• PowerPC 604 RISC Microprocessor User’s Manual (Motorola Document

MPR604UM/AD).
• PowerPC MPC821 Portable Systems Microprocessor User’s Manual (Motorola Doc-

ument MPC821UM/AD).
• PowerQUICC MPC860 User’s Manual (Motorola Document MPC860UM/AD).

Motorola maintains an on-line electronic library for the PowerPC at the following URL:

http://www.mot.com/powerpc/library/library.html

This site has a a wealth of information and examples. Many of the manuals are available
from that site in electronic format.

PowerPC Processor Simulator Information

PSIM is a program which emulates the Instruction Set Architecture of the PowerPC mi-
croprocessor family. It is reely available in source code form under the terms of the GNU
General Public License (version 2 or later). PSIM can be integrated with the GNU De-
bugger (gdb) to execute and debug PowerPC executables on non-PowerPC hosts. PSIM

2 RTEMS PowerPC Applications Supplement

supports the addition of user provided device models which can be used to allow one to
develop and debug embedded applications using the simulator.

The latest version of PSIM is made available to the public via anonymous ftp at
ftp://ftp.ci.com.au/pub/psim or ftp://cambridge.cygnus.com/pub/psim. There is also a
mailing list at powerpc-psim@ci.com.au.

Chapter 1: CPU Model Dependent Features 3

1 CPU Model Dependent Features

1.1 Introduction

Microprocessors are generally classified into families with a variety of CPU models or im-
plementations within that family. Within a processor family, there is a high level of binary
compatibility. This family may be based on either an architectural specification or on main-
taining compatibility with a popular processor. Recent microprocessor families such as the
SPARC, and PowerPC are based on an architectural specification which is independent or
any particular CPU model or implementation. Older families such as the M68xxx and the
iX86 evolved as the manufacturer strived to produce higher performance processor models
which maintained binary compatibility with older models.

RTEMS takes advantage of the similarity of the various models within a CPU family.
Although the models do vary in significant ways, the high level of compatibility makes it
possible to share the bulk of the CPU dependent executive code across the entire family.

1.2 CPU Model Feature Flags

Each processor family supported by RTEMS has a list of features which vary between
CPU models within a family. For example, the most common model dependent feature
regardless of CPU family is the presence or absence of a floating point unit or coprocessor.
When defining the list of features present on a particular CPU model, one simply notes
that floating point hardware is or is not present and defines a single constant appropriately.
Conditional compilation is utilized to include the appropriate source code for this CPU
model’s feature set. It is important to note that this means that RTEMS is thus compiled
using the appropriate feature set and compilation flags optimal for this CPU model used.
The alternative would be to generate a binary which would execute on all family members
using only the features which were always present.

This section presents the set of features which vary across PowerPC implementations and
are of importance to RTEMS. The set of CPU model feature macros are defined in the file
cpukit/score/cpu/ppc/ppc.h based upon the particular CPU model defined on the compi-
lation command line.

1.2.1 CPU Model Name

The macro CPU MODEL NAME is a string which designates the name of this CPU model.
For example, for the PowerPC 603e model, this macro is set to the string "PowerPC 603e".

1.2.2 Floating Point Unit

The macro PPC HAS FPU is set to 1 to indicate that this CPU model has a hardware
floating point unit and 0 otherwise.

1.2.3 Alignment

The macro PPC ALIGNMENT is set to the PowerPC model’s worst case alignment re-
quirement for data types on a byte boundary. This value is used to derive the alignment
restrictions for memory allocated from regions and partitions.

4 RTEMS PowerPC Applications Supplement

1.2.4 Cache Alignment

The macro PPC CACHE ALIGNMENT is set to the line size of the cache. It is used to
align the entry point of critical routines so that as much code as possible can be retrieved
with the initial read into cache. This is done for the interrupt handler as well as the context
switch routines.

In addition, the "shortcut" data structure used by the PowerPC implementation to ease
access to data elements frequently accessed by RTEMS routines implemented in assembly
language is aligned using this value.

1.2.5 Maximum Interrupts

The macro PPC INTERRUPT MAX is set to the number of exception sources supported
by this PowerPC model.

1.2.6 Has Double Precision Floating Point

The macro PPC HAS DOUBLE is set to 1 to indicate that the PowerPC model has support
for double precision floating point numbers. This is important because the floating point
registers need only be four bytes wide (not eight) if double precision is not supported.

1.2.7 Critical Interrupts

The macro PPC HAS RFCI is set to 1 to indicate that the PowerPC model has the Critical
Interrupt capability as defined by the IBM 403 models.

1.2.8 Use Multiword Load/Store Instructions

The macro PPC USE MULTIPLE is set to 1 to indicate that multiword load and store
instructions should be used to perform context switch operations. The relative efficiency of
multiword load and store instructions versus an equivalent set of single word load and store
instructions varies based upon the PowerPC model.

1.2.9 Instruction Cache Size

The macro PPC I CACHE is set to the size in bytes of the instruction cache.

1.2.10 Data Cache Size

The macro PPC D CACHE is set to the size in bytes of the data cache.

1.2.11 Debug Model

The macro PPC DEBUG MODEL is set to indicate the debug support features present in
this CPU model. The following debug support feature sets are currently supported:

PPC_DEBUG_MODEL_STANDARD
indicates that the single-step trace enable (SE) and branch trace
enable (BE) bits in the MSR are supported by this CPU model.

PPC_DEBUG_MODEL_SINGLE_STEP_ONLY
indicates that only the single-step trace enable (SE) bit in the MSR
is supported by this CPU model.

Chapter 1: CPU Model Dependent Features 5

PPC_DEBUG_MODEL_IBM4xx
indicates that the debug exception enable (DE) bit in the MSR is
supported by this CPU model. At this time, this particular debug
feature set has only been seen in the IBM 4xx series.

1.2.12 Low Power Model

The macro PPC LOW POWER MODE is set to indicate the low power model supported
by this CPU model. The following low power modes are currently supported.

PPC_LOW_POWER_MODE_NONE
indicates that this CPU model has no low power mode support.

PPC_LOW_POWER_MODE_STANDARD
indicates that this CPU model follows the low power model defined
for the PPC603e.

6 RTEMS PowerPC Applications Supplement

Chapter 2: Calling Conventions 7

2 Calling Conventions

2.1 Introduction

Each high-level language compiler generates subroutine entry and exit code based upon a
set of rules known as the compiler’s calling convention. These rules address the following
issues:

• register preservation and usage

• parameter passing

• call and return mechanism

A compiler’s calling convention is of importance when interfacing to subroutines written
in another language either assembly or high-level. Even when the high-level language and
target processor are the same, different compilers may use different calling conventions. As
a result, calling conventions are both processor and compiler dependent.

RTEMS supports the Embedded Application Binary Interface (EABI) calling convention.
Documentation for EABI is available by sending a message with a subject line of "EABI"
to eabi@goth.sis.mot.com.

2.2 Programming Model

This section discusses the programming model for the PowerPC architecture.

2.2.1 Non-Floating Point Registers

The PowerPC architecture defines thirty-two non-floating point registers directly visible to
the programmer. In thirty-two bit implementations, each register is thirty-two bits wide.
In sixty-four bit implementations, each register is sixty-four bits wide.

These registers are referred to as gpr0 to gpr31.

Some of the registers serve defined roles in the EABI programming model. The following
table describes the role of each of these registers:

Register Name Alternate Names Description
r1 sp stack pointer
r2 NA global pointer to the Small

Constant Area (SDA2)
r3 - r12 NA parameter and result passing

r13 NA global pointer to the Small
Data Area (SDA2)

2.2.2 Floating Point Registers

The PowerPC architecture includes thirty-two, sixty-four bit floating point registers. All
PowerPC floating point instructions interpret these registers as 32 double precision floating
point registers, regardless of whether the processor has 64-bit or 32-bit implementation.

8 RTEMS PowerPC Applications Supplement

The floating point status and control register (fpscr) records exceptions and the type of
result generated by floating-point operations. Additionally, it controls the rounding mode
of operations and allows the reporting of floating exceptions to be enabled or disabled.

2.2.3 Special Registers

The PowerPC architecture includes a number of special registers which are critical to the
programming model:

Machine State Register
The MSR contains the processor mode, power management mode,
endian mode, exception information, privilege level, floating point
available and floating point excepiton mode, address translation in-
formation and the exception prefix.

Link Register

The LR contains the return address after a function call. This regis-
ter must be saved before a subsequent subroutine call can be made.
The use of this register is discussed further in the Call and Return
Mechanism section below.

Count Register

The CTR contains the iteration variable for some loops. It may also
be used for indirect function calls and jumps.

2.3 Call and Return Mechanism

The PowerPC architecture supports a simple yet effective call and return mechanism. A
subroutine is invoked via the "branch and link" (bl) and "brank and link absolute" (bla)
instructions. This instructions place the return address in the Link Register (LR). The
callee returns to the caller by executing a "branch unconditional to the link register" (blr)
instruction. Thus the callee returns to the caller via a jump to the return address which is
stored in the LR.

The previous contents of the LR are not automatically saved by either the bl or bla. It
is the responsibility of the callee to save the contents of the LR before invoking another
subroutine. If the callee invokes another subroutine, it must restore the LR before executing
the blr instruction to return to the caller.

It is important to note that the PowerPC subroutine call and return mechanism does not
automatically save and restore any registers.

The LR may be accessed as special purpose register 8 (SPR8) using the "move from special
register" (mfspr) and "move to special register" (mtspr) instructions.

2.4 Calling Mechanism

All RTEMS directives are invoked using the regular PowerPC EABI calling convention via
the bl or bla instructions.

Chapter 2: Calling Conventions 9

2.5 Register Usage

As discussed above, the call instruction does not automatically save any registers. It is
the responsibility of the callee to save and restore any registers which must be preserved
across subroutine calls. The callee is responsible for saving callee-preserved registers to the
program stack and restoring them before returning to the caller.

2.6 Parameter Passing

RTEMS assumes that arguments are placed in the general purpose registers with the first
argument in register 3 (r3), the second argument in general purpose register 4 (r4), and so
forth until the seventh argument is in general purpose register 10 (r10). If there are more
than seven arguments, then subsequent arguments are placed on the program stack. The
following pseudo-code illustrates the typical sequence used to call a RTEMS directive with
three (3) arguments:

load third argument into r5
load second argument into r4
load first argument into r3
invoke directive

2.7 User-Provided Routines

All user-provided routines invoked by RTEMS, such as user extensions, device drivers, and
MPCI routines, must also adhere to these same calling conventions.

10 RTEMS PowerPC Applications Supplement

Chapter 3: Memory Model 11

3 Memory Model

3.1 Introduction

A processor may support any combination of memory models ranging from pure physical
addressing to complex demand paged virtual memory systems. RTEMS supports a flat
memory model which ranges contiguously over the processor’s allowable address space.
RTEMS does not support segmentation or virtual memory of any kind. The appropriate
memory model for RTEMS provided by the targeted processor and related characteristics
of that model are described in this chapter.

3.2 Flat Memory Model

The PowerPC architecture supports a variety of memory models. RTEMS supports the
PowerPC using a flat memory model with paging disabled. In this mode, the PowerPC
automatically converts every address from a logical to a physical address each time it is
used. The PowerPC uses information provided in the Block Address Translation (BAT) to
convert these addresses.

Implementations of the PowerPC architecture may be thirty-two or sixty-four bit. The Pow-
erPC architecture supports a flat thirty-two or sixty-four bit address space with addresses
ranging from 0x00000000 to 0xFFFFFFFF (4 gigabytes) in thirty-two bit implementations
or to 0xFFFFFFFFFFFFFFFF in sixty-four bit implementations. Each address is repre-
sented by either a thirty-two bit or sixty-four bit value and is byte addressable. The address
may be used to reference a single byte, half-word (2-bytes), word (4 bytes), or in sixty-four
bit implementations a doubleword (8 bytes). Memory accesses within the address space are
performed in big or little endian fashion by the PowerPC based upon the current setting
of the Little-endian mode enable bit (LE) in the Machine State Register (MSR). While the
processor is in big endian mode, memory accesses which are not properly aligned gener-
ate an "alignment exception" (vector offset 0x00600). In little endian mode, the PowerPC
architecture does not require the processor to generate alignment exceptions.

The following table lists the alignment requirements for a variety of data accesses:

Data Type Alignment Requirement
byte 1

half-word 2
word 4

doubleword 8

Doubleword load and store operations are only available in PowerPC CPU models which
are sixty-four bit implementations.

RTEMS does not directly support any PowerPC Memory Management Units, therefore,
virtual memory or segmentation systems involving the PowerPC are not supported.

12 RTEMS PowerPC Applications Supplement

Chapter 4: Interrupt Processing 13

4 Interrupt Processing

4.1 Introduction

Different types of processors respond to the occurrence of an interrupt in its own unique
fashion. In addition, each processor type provides a control mechanism to allow for the
proper handling of an interrupt. The processor dependent response to the interrupt modifies
the current execution state and results in a change in the execution stream. Most processors
require that an interrupt handler utilize some special control mechanisms to return to the
normal processing stream. Although RTEMS hides many of the processor dependent details
of interrupt processing, it is important to understand how the RTEMS interrupt manager
is mapped onto the processor’s unique architecture. Discussed in this chapter are the
PowerPC’s interrupt response and control mechanisms as they pertain to RTEMS.

RTEMS and associated documentation uses the terms interrupt and vector. In the PowerPC
architecture, these terms correspond to exception and exception handler, respectively. The
terms will be used interchangeably in this manual.

4.2 Synchronous Versus Asynchronous Exceptions

In the PowerPC architecture exceptions can be either precise or imprecise and either syn-
chronous or asynchronous. Asynchronous exceptions occur when an external event inter-
rupts the processor. Synchronous exceptions are caused by the actions of an instruction.
During an exception SRR0 is used to calculate where instruction processing should resume.
All instructions prior to the resume instruction will have completed execution. SRR1 is
used to store the machine status.

There are two asynchronous nonmaskable, highest-priority exceptions system reset and
machine check. There are two asynchrononous maskable low-priority exceptions external
interrupt and decrementer. Nonmaskable execptions are never delayed, therefore if two
nonmaskable, asynchronous exceptions occur in immediate succession, the state information
saved by the first exception may be overwritten when the subsequent exception occurs.

The PowerPC arcitecure defines one imprecise exception, the imprecise floating point en-
abled exception. All other synchronous exceptions are precise. The synchronization oc-
curing during asynchronous precise exceptions conforms to the requirements for context
synchronization.

4.3 Vectoring of Interrupt Handler

Upon determining that an exception can be taken the PowerPC automatically performs the
following actions:

• an instruction address is loaded into SRR0

• bits 33-36 and 42-47 of SRR1 are loaded with information specific to the exception.

• bits 0-32, 37-41, and 48-63 of SRR1 are loaded with corresponding bits from the
MSR.

• the MSR is set based upon the exception type.

14 RTEMS PowerPC Applications Supplement

• instruction fetch and execution resumes, using the new MSR value, at a location
specific to the execption type.

If the interrupt handler was installed as an RTEMS interrupt handler, then upon receipt of
the interrupt, the processor passes control to the RTEMS interrupt handler which performs
the following actions:

• saves the state of the interrupted task on it’s stack,
• saves all registers which are not normally preserved by the calling sequence so the

user’s interrupt service routine can be written in a high-level language.
• if this is the outermost (i.e. non-nested) interrupt, then the RTEMS interrupt

handler switches from the current stack to the interrupt stack,
• enables exceptions,
• invokes the vectors to a user interrupt service routine (ISR).

Asynchronous interrupts are ignored while exceptions are disabled. Synchronous interrupts
which occur while are disabled result in the CPU being forced into an error mode.

A nested interrupt is processed similarly with the exception that the current stack need not
be switched to the interrupt stack.

4.4 Interrupt Levels

The PowerPC architecture supports only a single external asynchronous interrupt source.
This interrupt source may be enabled and disabled via the External Interrupt Enable (EE)
bit in the Machine State Register (MSR). Thus only two level (enabled and disabled) of
external device interrupt priorities are directly supported by the PowerPC architecture.

Some PowerPC implementations include a Critical Interrupt capability which is often used
to receive interrupts from high priority external devices.

The RTEMS interrupt level mapping scheme for the PowerPC is not a numeric level as on
most RTEMS ports. It is a bit mapping in which the least three significiant bits of the
interrupt level are mapped directly to the enabling of specific interrupt sources as follows:

Critical Interrupt Setting bit 0 (the least significant bit) of the interrupt level enables
the Critical Interrupt source, if it is available on this CPU model.

Machine Check Setting bit 1 of the interrupt level enables Machine Check execptions.

External Interrupt Setting bit 2 of the interrupt level enables External Interrupt execp-
tions.

All other bits in the RTEMS task interrupt level are ignored.

4.5 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When
these sections are encountered, RTEMS disables Critical Interrupts, External Interrupts and
Machine Checks before the execution of this section and restores them to the previous level
upon completion of the section. RTEMS has been optimized to insure that interrupts are

Chapter 4: Interrupt Processing 15

disabled for less than TBD microseconds on a na Mhz PowerPC 603e with zero wait states.
These numbers will vary based the number of wait states and processor speed present on the
target board. [NOTE: The maximum period with interrupts disabled is hand calculated.
This calculation was last performed for Release 4.0.0-lmco.]

If a PowerPC implementation provides non-maskable interrupts (NMI) which cannot be
disabled, ISRs which process these interrupts MUST NEVER issue RTEMS system calls.
If a directive is invoked, unpredictable results may occur due to the inability of RTEMS to
protect its critical sections. However, ISRs that make no system calls may safely execute
as non-maskable interrupts.

4.6 Interrupt Stack

The PowerPC architecture does not provide for a dedicated interrupt stack. Thus by default,
exception handlers would execute on the stack of the RTEMS task which they interrupted.
This artificially inflates the stack requirements for each task since EVERY task stack would
have to include enough space to account for the worst case interrupt stack requirements in
addition to it’s own worst case usage. RTEMS addresses this problem on the PowerPC by
providing a dedicated interrupt stack managed by software.

During system initialization, RTEMS allocates the interrupt stack from the Workspace
Area. The amount of memory allocated for the interrupt stack is determined by the inter-
rupt stack size field in the CPU Configuration Table. As part of processing a non-nested
interrupt, RTEMS will switch to the interrupt stack before invoking the installed handler.

16 RTEMS PowerPC Applications Supplement

Chapter 5: Default Fatal Error Processing 17

5 Default Fatal Error Processing

5.1 Introduction

Upon detection of a fatal error by either the application or RTEMS the fatal error manager
is invoked. The fatal error manager will invoke the user-supplied fatal error handlers. If no
user-supplied handlers are configured, the RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error handlers return to the executive the default fatal
error handler is then invoked. This chapter describes the precise operations of the default
fatal error handler.

5.2 Default Fatal Error Handler Operations

The default fatal error handler which is invoked by the rtems_fatal_error_occurred
directive when there is no user handler configured or the user handler returns control to
RTEMS. The default fatal error handler performs the following actions:

• places the error code in r3, and
• executes a trap instruction which results in a Program Exception.

If the Program Exception returns, then the following actions are performed:

• disables all processor exceptions by loading a 0 into the MSR, and
• goes into an infinite loop to simulate a halt processor instruction.

18 RTEMS PowerPC Applications Supplement

Chapter 6: Board Support Packages 19

6 Board Support Packages

6.1 Introduction

An RTEMS Board Support Package (BSP) must be designed to support a particular proces-
sor and target board combination. This chapter presents a discussion of PowerPC specific
BSP issues. For more information on developing a BSP, refer to the chapter titled Board
Support Packages in the RTEMS Applications User’s Guide.

6.2 System Reset

An RTEMS based application is initiated or re-initiated when the PowerPC processor is
reset. The PowerPC architecture defines a Reset Exception, but leaves the details of the
CPU state as implementation specific. Please refer to the User’s Manual for the CPU model
in question.

In general, at power-up the PowerPC begin execution at address 0xFFF00100 in supervisor
mode with all exceptions disabled. For soft resets, the CPU will vector to either 0xFFF00100
or 0x00000100 depending upon the setting of the Exception Prefix bit in the MSR. If during
a soft reset, a Machine Check Exception occurs, then the CPU may execute a hard reset.

6.3 Processor Initialization

It is the responsibility of the application’s initialization code to initialize the CPU and
board to a quiescent state before invoking the rtems_initialize_executive directive. It
is recommended that the BSP utilize the predriver_hook to install default handlers for
all exceptions. These default handlers may be overwritten as various device drivers and
subsystems install their own exception handlers. Upon completion of RTEMS executive
initialization, all interrupts are enabled.

If this PowerPC implementation supports on-chip caching and this is to be utilized, then
it should be enabled during the reset application initialization code. On-chip caching has
been observed to prevent some emulators from working properly, so it may be necessary to
run with caching disabled to use these emulators.

In addition to the requirements described in the Board Support Packages chapter of the [No
value for “LANGUAGE”] Applications User’s Manual for the reset code which is executed
before the call to rtems_initialize_executive, the PowrePC version has the following
specific requirements:

• Must leave the PR bit of the Machine State Register (MSR) set to 0 so the PowerPC
remains in the supervisor state.

• Must set stack pointer (sp or r1) such that a minimum stack size of MINI-
MUM STACK SIZE bytes is provided for the rtems_initialize_executive di-
rective.

• Must disable all external interrupts (i.e. clear the EI (EE) bit of the machine state
register).

• Must enable traps so window overflow and underflow conditions can be properly
handled.

20 RTEMS PowerPC Applications Supplement

• Must initialize the PowerPC’s initial Exception Table with default handlers.

Chapter 7: Processor Dependent Information Table 21

7 Processor Dependent Information Table

7.1 Introduction

Any highly processor dependent information required to describe a processor to RTEMS
is provided in the CPU Dependent Information Table. This table is not required for all
processors supported by RTEMS. This chapter describes the contents, if any, for a particular
processor type.

7.2 CPU Dependent Information Table

The PowerPC version of the RTEMS CPU Dependent Information Table is given by the C
structure definition is shown below:

typedef struct {
void (*pretasking_hook)(void);
void (*predriver_hook)(void);
void (*postdriver_hook)(void);
void (*idle_task)(void);
boolean do_zero_of_workspace;
unsigned32 idle_task_stack_size;
unsigned32 interrupt_stack_size;
unsigned32 extra_mpci_receive_server_stack;
void * (*stack_allocate_hook)(unsigned32);
void (*stack_free_hook)(void*);
/* end of fields required on all CPUs */

unsigned32 clicks_per_usec; /* Timer clicks per microsecond */
void (*spurious_handler)(

unsigned32 vector, CPU_Interrupt_frame *);
boolean exceptions_in_RAM; /* TRUE if in RAM */

#if defined(ppc403)
unsigned32 serial_per_sec; /* Serial clocks per second */
boolean serial_external_clock;
boolean serial_xon_xoff;
boolean serial_cts_rts;
unsigned32 serial_rate;
unsigned32 timer_average_overhead; /* in ticks */
unsigned32 timer_least_valid; /* Least valid number from timer */

#endif
};

pretasking_hook is the address of the user provided routine which is invoked once
RTEMS APIs are initialized. This routine will be invoked before
any system tasks are created. Interrupts are disabled. This field
may be NULL to indicate that the hook is not utilized.

22 RTEMS PowerPC Applications Supplement

predriver_hook is the address of the user provided routine that is invoked immedi-
ately before the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

postdriver_hook is the address of the user provided routine that is invoked immedi-
ately after the the device drivers and MPCI are initialized. RTEMS
initialization is complete but interrupts and tasking are disabled.
This field may be NULL to indicate that the hook is not utilized.

idle_task is the address of the optional user provided routine which is used as
the system’s IDLE task. If this field is not NULL, then the RTEMS
default IDLE task is not used. This field may be NULL to indicate
that the default IDLE is to be used.

do_zero_of_workspace
indicates whether RTEMS should zero the Workspace as part of its
initialization. If set to TRUE, the Workspace is zeroed. Otherwise,
it is not.

idle_task_stack_size
is the size of the RTEMS idle task stack in bytes. If this number is
less than MINIMUM STACK SIZE, then the idle task’s stack will
be MINIMUM STACK SIZE in byte.

interrupt_stack_size
is the size of the RTEMS allocated interrupt stack in bytes. This
value must be at least as large as MINIMUM STACK SIZE.

extra_mpci_receive_server_stack
is the extra stack space allocated for the RTEMS MPCI receive server
task in bytes. The MPCI receive server may invoke nearly all direc-
tives and may require extra stack space on some targets.

stack_allocate_hook
is the address of the optional user provided routine which allo-
cates memory for task stacks. If this hook is not NULL, then a
stack free hook must be provided as well.

stack_free_hook is the address of the optional user provided routine which frees
memory for task stacks. If this hook is not NULL, then a
stack allocate hook must be provided as well.

clicks_per_usec is the number of decrementer interupts that occur each microsecond.

spurious_handler is the address of the routine which is invoked when a spurious inter-
rupt occurs.

exceptions_in_RAM indicates whether the exception vectors are located in RAM or ROM.
If they are located in RAM dynamic vector installation occurs, oth-
erwise it does not.

serial_per_sec is a PPC403 specific field which specifies the number of clock ticks
per second for the PPC403 serial timer.

Chapter 7: Processor Dependent Information Table 23

serial_rate is a PPC403 specific field which specifies the baud rate for the
PPC403 serial port.

serial_external_clock
is a PPC403 specific field which indicates whether or not to mask in
a 0x2 into the Input/Output Configuration Register (IOCR) during
initialization of the PPC403 console. (NOTE: This bit is defined as
"reserved" 6-12?)

serial_xon_xoff is a PPC403 specific field which indicates whether or not
XON/XOFF flow control is supported for the PPC403 serial port.

serial_cts_rts is a PPC403 specific field which indicates whether or not to set
the least significant bit of the Input/Output Configuration Regis-
ter (IOCR) during initialization of the PPC403 console. (NOTE:
This bit is defined as "reserved" 6-12?)

timer_average_overhead
is a PPC403 specific field which specifies the average number of over-
head ticks that occur on the PPC403 timer.

timer_least_valid is a PPC403 specific field which specifies the maximum valid PPC403
timer value.

24 RTEMS PowerPC Applications Supplement

Chapter 8: Memory Requirements 25

8 Memory Requirements

8.1 Introduction

Memory is typically a limited resource in real-time embedded systems, therefore, RTEMS
can be configured to utilize the minimum amount of memory while meeting all of the
applications requirements. Worksheets are provided which allow the RTEMS application
developer to determine the amount of RTEMS code and RAM workspace which is required
by the particular configuration. Also provided are the minimum code space, maximum code
space, and the constant data space required by RTEMS.

8.2 Data Space Requirements

RTEMS requires a small amount of memory for its private variables. This data area must
be in RAM and is separate from the RTEMS RAM Workspace. The following illustrates
the data space required for all configurations of RTEMS:

• Data Space: 428

8.3 Minimum and Maximum Code Space Requirements

A maximum configuration of RTEMS includes the core and all managers, including the
multiprocessing manager. Conversely, a minimum configuration of RTEMS includes only
the core and the following managers: initialization, task, interrupt and fatal error. The
following illustrates the code space required by these configurations of RTEMS:

• Minimum Configuration: 30,912
• Maximum Configuration: 55,572

8.4 RTEMS Code Space Worksheet

The RTEMS Code Space Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the memory required by the RTEMS run-time environment.
RTEMS allows the custom configuration of the executive by optionally excluding managers
which are not required by a particular application. This worksheet provides the included
and excluded size of each manager in tabular form allowing for the quick calculation of any
custom configuration of RTEMS. The RTEMS Code Space Worksheet is below:

26 RTEMS PowerPC Applications Supplement

RTEMS Code Space Worksheet

Component Included Not Included Size
Core 21,452 NA

Initialization 1,408 NA
Task 4,804 NA

Interrupt 96 NA
Clock 536 NA
Timer 1,380 340

Semaphore 1,928 308
Message 2,400 532
Event 1,460 100
Signal 576 100

Partition 1,384 244
Region 1,780 292

Dual Ported Memory 928 244
I/O 1,244 NA

Fatal Error 44 NA
Rate Monotonic 1,756 336
Multiprocessing 11,448 612

Total Code Space Requirements

Chapter 8: Memory Requirements 27

8.5 RTEMS RAM Workspace Worksheet

The RTEMS RAM Workspace Worksheet is a tool provided to aid the RTEMS application
designer to accurately calculate the minimum memory block to be reserved for RTEMS
use. This worksheet provides equations for calculating the amount of memory required
based upon the number of objects configured, whether for single or multiple processor
versions of the executive. This information is presented in tabular form, along with the fixed
system requirements, allowing for quick calculation of any application defined configuration
of RTEMS. The RTEMS RAM Workspace Worksheet is provided below:

RTEMS RAM Workspace Worksheet

Description Equation Bytes Required
maximum tasks * 456 =
maximum timers * 68 =

maximum semaphores * 120 =
maximum message queues * 144 =

maximum regions * 140 =
maximum partitions * 56 =

maximum ports * 36 =
maximum periods * 36 =

maximum extensions * 64 =
Floating Point Tasks * 264 =

Task Stacks =
Total Single Processor Requirements

Description Equation Bytes Required
maximum nodes * 48 =

maximum global objects * 20 =
maximum proxies * 124 =

Total Multiprocessing Requirements
Fixed System Requirements 10,008

Total Single Processor Requirements
Total Multiprocessing Requirements

Minimum Bytes for RTEMS Workspace

28 RTEMS PowerPC Applications Supplement

Chapter 9: Timing Specification 29

9 Timing Specification

9.1 Introduction

This chapter provides information pertaining to the measurement of the performance of
RTEMS, the methods of gathering the timing data, and the usefulness of the data. Also
discussed are other time critical aspects of RTEMS that affect an applications design and
ultimate throughput. These aspects include determinancy, interrupt latency and context
switch times.

9.2 Philosophy

Benchmarks are commonly used to evaluate the performance of software and hardware.
Benchmarks can be an effective tool when comparing systems. Unfortunately, benchmarks
can also be manipulated to justify virtually any claim. Benchmarks of real-time executives
are difficult to evaluate for a variety of reasons. Executives vary in the robustness of features
and options provided. Even when executives compare favorably in functionality, it is quite
likely that different methodologies were used to obtain the timing data. Another problem
is that some executives provide times for only a small subset of directives, This is typically
justified by claiming that these are the only time-critical directives. The performance of
some executives is also very sensitive to the number of objects in the system. To obtain
any measure of usefulness, the performance information provided for an executive should
address each of these issues.

When evaluating the performance of a real-time executive, one typically considers the fol-
lowing areas: determinancy, directive times, worst case interrupt latency, and context switch
time. Unfortunately, these areas do not have standard measurement methodologies. This
allows vendors to manipulate the results such that their product is favorably represented.
We have attempted to provide useful and meaningful timing information for RTEMS. To in-
sure the usefulness of our data, the methodology and definitions used to obtain and describe
the data are also documented.

9.2.1 Determinancy

The correctness of data in a real-time system must always be judged by its timeliness. In
many real-time systems, obtaining the correct answer does not necessarily solve the problem.
For example, in a nuclear reactor it is not enough to determine that the core is overheating.
This situation must be detected and acknowledged early enough that corrective action can
be taken and a meltdown avoided.

Consequently, a system designer must be able to predict the worst-case behavior of the
application running under the selected executive. In this light, it is important that a real-
time system perform consistently regardless of the number of tasks, semaphores, or other
resources allocated. An important design goal of a real-time executive is that all internal
algorithms be fixed-cost. Unfortunately, this goal is difficult to completely meet without
sacrificing the robustness of the executive’s feature set.

Many executives use the term deterministic to mean that the execution times of their
services can be predicted. However, they often provide formulas to modify execution times

30 RTEMS PowerPC Applications Supplement

based upon the number of objects in the system. This usage is in sharp contrast to the
notion of deterministic meaning fixed cost.

Almost all RTEMS directives execute in a fixed amount of time regardless of the number
of objects present in the system. The primary exception occurs when a task blocks while
acquiring a resource and specifies a non-zero timeout interval.

Other exceptions are message queue broadcast, obtaining a variable length memory block,
object name to ID translation, and deleting a resource upon which tasks are waiting. In
addition, the time required to service a clock tick interrupt is based upon the number of
timeouts and other "events" which must be processed at that tick. This second group is
composed primarily of capabilities which are inherently non-deterministic but are infre-
quently used in time critical situations. The major exception is that of servicing a clock
tick. However, most applications have a very small number of timeouts which expire at
exactly the same millisecond (usually none, but occasionally two or three).

9.2.2 Interrupt Latency

Interrupt latency is the delay between the CPU’s receipt of an interrupt request and the
execution of the first application-specific instruction in an interrupt service routine. Inter-
rupts are a critical component of most real-time applications and it is critical that they be
acted upon as quickly as possible.

Knowledge of the worst case interrupt latency of an executive aids the application designer
in determining the maximum period of time between the generation of an interrupt and
an interrupt handler responding to that interrupt. The interrupt latency of an system is
the greater of the executive’s and the applications’s interrupt latency. If the application
disables interrupts longer than the executive, then the application’s interrupt latency is the
system’s worst case interrupt disable period.

The worst case interrupt latency for a real-time executive is based upon the following
components:

• the longest period of time interrupts are disabled by the executive,
• the overhead required by the executive at the beginning of each ISR,
• the time required for the CPU to vector the interrupt, and
• for some microprocessors, the length of the longest instruction.

The first component is irrelevant if an interrupt occurs when interrupts are enabled, al-
though it must be included in a worst case analysis. The third and fourth components are
particular to a CPU implementation and are not dependent on the executive. The fourth
component is ignored by this document because most applications use only a subset of a
microprocessor’s instruction set. Because of this the longest instruction actually executed is
application dependent. The worst case interrupt latency of an executive is typically defined
as the sum of components (1) and (2). The second component includes the time necessry
for RTEMS to save registers and vector to the user-defined handler. RTEMS includes the
third component, the time required for the CPU to vector the interrupt, because it is a
required part of any interrupt.

Many executives report the maximum interrupt disable period as their interrupt latency
and ignore the other components. This results in very low worst-case interrupt latency

Chapter 9: Timing Specification 31

times which are not indicative of actual application performance. The definition used by
RTEMS results in a higher interrupt latency being reported, but accurately reflects the
longest delay between the CPU’s receipt of an interrupt request and the execution of the
first application-specific instruction in an interrupt service routine.

The actual interrupt latency times are reported in the Timing Data chapter of this supple-
ment.

9.2.3 Context Switch Time

An RTEMS context switch is defined as the act of taking the CPU from the currently
executing task and giving it to another task. This process involves the following components:

• Saving the hardware state of the current task.
• Optionally, invoking the TASK SWITCH user extension.
• Restoring the hardware state of the new task.

RTEMS defines the hardware state of a task to include the CPU’s data registers, address
registers, and, optionally, floating point registers.

Context switch time is often touted as a performance measure of real-time executives.
However, a context switch is performed as part of a directive’s actions and should be viewed
as such when designing an application. For example, if a task is unable to acquire a
semaphore and blocks, a context switch is required to transfer control from the blocking
task to a new task. From the application’s perspective, the context switch is a direct result
of not acquiring the semaphore. In this light, the context switch time is no more relevant
than the performance of any other of the executive’s subroutines which are not directly
accessible by the application.

In spite of the inappropriateness of using the context switch time as a performance metric,
RTEMS context switch times for floating point and non-floating points tasks are provided
for comparison purposes. Of the executives which actually support floating point operations,
many do not report context switch times for floating point context switch time. This results
in a reported context switch time which is meaningless for an application with floating point
tasks.

The actual context switch times are reported in the Timing Data chapter of this supplement.

9.2.4 Directive Times

Directives are the application’s interface to the executive, and as such their execution times
are critical in determining the performance of the application. For example, an applica-
tion using a semaphore to protect a critical data structure should be aware of the time
required to acquire and release a semaphore. In addition, the application designer can uti-
lize the directive execution times to evaluate the performance of different synchronization
and communication mechanisms.

The actual directive execution times are reported in the Timing Data chapter of this sup-
plement.

9.3 Methodology

32 RTEMS PowerPC Applications Supplement

9.3.1 Software Platform

The RTEMS timing suite is written in C. The overhead of passing arguments to RTEMS by
C is not timed. The times reported represent the amount of time from entering to exiting
RTEMS.

The tests are based upon one of two execution models: (1) single invocation times, and (2)
average times of repeated invocations. Single invocation times are provided for directives
which cannot easily be invoked multiple times in the same scenario. For example, the
times reported for entering and exiting an interrupt service routine are single invocation
times. The second model is used for directives which can easily be invoked multiple times
in the same scenario. For example, the times reported for semaphore obtain and semaphore
release are averages of multiple invocations. At least 100 invocations are used to obtain the
average.

9.3.2 Hardware Platform

Since RTEMS supports a variety of processors, the hardware platform used to gather the
benchmark times must also vary. Therefore, for each processor supported the hardware
platform must be defined. Each definition will include a brief description of the target
hardware platform including the clock speed, memory wait states encountered, and any
other pertinent information. This definition may be found in the processor dependent
timing data chapter within this supplement.

9.3.3 What is measured?

An effort was made to provide execution times for a large portion of RTEMS. Times were
provided for most directives regardless of whether or not they are typically used in time
critical code. For example, execution times are provided for all object create and delete
directives, even though these are typically part of application initialization.

The times include all RTEMS actions necessary in a particular scenario. For example, all
times for blocking directives include the context switch necessary to transfer control to a
new task. Under no circumstances is it necessary to add context switch time to the reported
times.

The following list describes the objects created by the timing suite:

• All tasks are non-floating point.

• All tasks are created as local objects.

• No timeouts are used on blocking directives.

• All tasks wait for objects in FIFO order.

In addition, no user extensions are configured.

9.3.4 What is not measured?

The times presented in this document are not intended to represent best or worst case
times, nor are all directives included. For example, no times are provided for the initialize
executive and fatal error occurred directives. Other than the exceptions detailed in the
Determinancy section, all directives will execute in the fixed length of time given.

Chapter 9: Timing Specification 33

Other than entering and exiting an interrupt service routine, all directives were executed
from tasks and not from interrupt service routines. Directives invoked from ISRs, when al-
lowable, will execute in slightly less time than when invoked from a task because rescheduling
is delayed until the interrupt exits.

9.3.5 Terminology

The following is a list of phrases which are used to distinguish individual execution paths
of the directives taken during the RTEMS performance analysis:

another task The directive was performed on a task other than the calling task.

available A task attempted to obtain a resource and immediately acquired it.

blocked task The task operated upon by the directive was blocked waiting for a
resource.

caller blocks The requested resoure was not immediately available and the calling
task chose to wait.

calling task The task invoking the directive.

messages flushed One or more messages was flushed from the message queue.

no messages flushed No messages were flushed from the message queue.

not available A task attempted to obtain a resource and could not immediately
acquire it.

no reschedule The directive did not require a rescheduling operation.

NO WAIT A resource was not available and the calling task chose to return
immediately via the NO WAIT option with an error.

obtain current The current value of something was requested by the calling task.

preempts caller The release of a resource caused a task of higher priority than the
calling to be readied and it became the executing task.

ready task The task operated upon by the directive was in the ready state.

reschedule The actions of the directive necessitated a rescheduling operation.

returns to caller The directive succeeded and immediately returned to the calling task.

returns to interrupted task
The instructions executed immediately following this interrupt will
be in the interrupted task.

returns to nested interrupt
The instructions executed immediately following this interrupt will
be in a previously interrupted ISR.

returns to preempting task
The instructions executed immediately following this interrupt or
signal handler will be in a task other than the interrupted task.

signal to self The signal set was sent to the calling task and signal processing was
enabled.

34 RTEMS PowerPC Applications Supplement

suspended task The task operated upon by the directive was in the suspended state.

task readied The release of a resource caused a task of lower or equal priority to
be readied and the calling task remained the executing task.

yield The act of attempting to voluntarily release the CPU.

Chapter 10: PSIM Timing Data 35

10 PSIM Timing Data

10.1 Introduction

The timing data for RTEMS on the PSIM target is provided along with the target dependent
aspects concerning the gathering of the timing data. The hardware platform used to gather
the times is described to give the reader a better understanding of each directive time
provided. Also, provided is a description of the interrupt latency and the context switch
times as they pertain to the PowerPC version of RTEMS.

10.2 Hardware Platform

All times reported in this chapter were measured using the PowerPC Instruction Simulator
(PSIM). PSIM simulates a variety of PowerPC 6xx models with the PPC603e being used
as the basis for the measurements reported in this chapter.

The PowerPC decrementer register was was used to gather all timing information. In
real hardware implementations of the PowerPC architecture, this register would typically
count something like CPU cycles or be a function of the clock speed. However, with PSIM
each count of the decrementer register represents an instruction. Thus all measurements
in this chapter are reported as the actual number of instructions executed. All sources of
hardware interrupts were disabled, although traps were enabled and the interrupt level of
the PowerPC allows all interrupts.

10.3 Interrupt Latency

The maximum period with traps disabled or the processor interrupt level set to it’s highest
value inside RTEMS is less than TBD microseconds including the instructions which disable
and re-enable interrupts. The time required for the PowerPC to vector an interrupt and
for the RTEMS entry overhead before invoking the user’s trap handler are a total of 61
microseconds. These combine to yield a worst case interrupt latency of less than TBD + 61
microseconds at na Mhz. [NOTE: The maximum period with interrupts disabled was last
determined for Release 4.0.0-lmco.]

The maximum period with interrupts disabled within RTEMS is hand-timed with some
assistance from PSIM. The maximum period with interrupts disabled with RTEMS occurs
was not measured on this target.

The interrupt vector and entry overhead time was generated on the PSIM benchmark plat-
form using the PowerPC’s decrementer register. This register was programmed to generate
an interrupt after one countdown.

10.4 Context Switch

The RTEMS processor context switch time is 214 instructions on the PSIM benchmark
platform when no floating point context is saved or restored. Additional execution
time is required when a TASK SWITCH user extension is configured. The use of the
TASK SWITCH extension is application dependent. Thus, its execution time is not con-
sidered part of the raw context switch time.

36 RTEMS PowerPC Applications Supplement

Since RTEMS was designed specifically for embedded missile applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the
state of the numeric coprocessor. The state of the numeric coprocessor is only saved when
an FLOATING POINT task is dispatched and that task was not the last task to utilize the
coprocessor. In a system with only one FLOATING POINT task, the state of the numeric
coprocessor will never be saved or restored. When the first FLOATING POINT task is
dispatched, RTEMS does not need to save the current state of the numeric coprocessor.

The following table summarizes the context switch times for the PSIM benchmark platform:

No Floating Point Contexts 214
Floating Point Contexts

restore first FP task 255
save initialized, restore initialized 140
save idle, restore initialized 140
save idle, restore idle 290

10.5 Directive Times

This sections is divided into a number of subsections, each of which contains a table listing
the execution times of that manager’s directives.

Chapter 10: PSIM Timing Data 37

10.6 Task Manager
TASK CREATE 1075
TASK IDENT 1637
TASK START 345
TASK RESTART

calling task 483
suspended task – returns to caller 396
blocked task – returns to caller 491
ready task – returns to caller 404
suspended task – preempts caller 644
blocked task – preempts caller 709
ready task – preempts caller 686

TASK DELETE
calling task 941
suspended task 703
blocked task 723
ready task 729

TASK SUSPEND
calling task 403
returns to caller 181

TASK RESUME
task readied – returns to caller 191
task readied – preempts caller 803

TASK SET PRIORITY
obtain current priority 147
returns to caller 264
preempts caller 517

TASK MODE
obtain current mode 88
no reschedule 110
reschedule – returns to caller 112
reschedule – preempts caller 386

TASK GET NOTE 156
TASK SET NOTE 155
TASK WAKE AFTER

yield – returns to caller 92
yield – preempts caller 348

TASK WAKE WHEN 546

38 RTEMS PowerPC Applications Supplement

10.7 Interrupt Manager

It should be noted that the interrupt entry times include vectoring the interrupt handler.

Interrupt Entry Overhead
returns to nested interrupt 60
returns to interrupted task 62
returns to preempting task 61

Interrupt Exit Overhead
returns to nested interrupt 55
returns to interrupted task 67
returns to preempting task 344

10.8 Clock Manager
CLOCK SET 340
CLOCK GET 29
CLOCK TICK 81

10.9 Timer Manager
TIMER CREATE 144
TIMER IDENT 1595
TIMER DELETE

inactive 197
active 181

TIMER FIRE AFTER
inactive 252
active 269

TIMER FIRE WHEN
inactive 333
active 334

TIMER RESET
inactive 233
active 250

TIMER CANCEL
inactive 156
active 140

Chapter 10: PSIM Timing Data 39

10.10 Semaphore Manager
SEMAPHORE CREATE 223
SEMAPHORE IDENT 1836
SEMAPHORE DELETE 1836
SEMAPHORE OBTAIN

available 175
not available – NO WAIT 175
not available – caller blocks 530

SEMAPHORE RELEASE
no waiting tasks 206
task readied – returns to caller 272
task readied – preempts caller 415

10.11 Message Manager
MESSAGE QUEUE CREATE 1022
MESSAGE QUEUE IDENT 1596
MESSAGE QUEUE DELETE 308
MESSAGE QUEUE SEND

no waiting tasks 421
task readied – returns to caller 434
task readied – preempts caller 581

MESSAGE QUEUE URGENT
no waiting tasks 422
task readied – returns to caller 435
task readied – preempts caller 582

MESSAGE QUEUE BROADCAST
no waiting tasks 244
task readied – returns to caller 482
task readied – preempts caller 630

MESSAGE QUEUE RECEIVE
available 345
not available – NO WAIT 197
not available – caller blocks 542

MESSAGE QUEUE FLUSH
no messages flushed 142
messages flushed 170

40 RTEMS PowerPC Applications Supplement

10.12 Event Manager
EVENT SEND

no task readied 145
task readied – returns to caller 250
task readied – preempts caller 407

EVENT RECEIVE
obtain current events 17
available 133
not available – NO WAIT 130
not available – caller blocks 442

10.13 Signal Manager
SIGNAL CATCH 95
SIGNAL SEND

returns to caller 165
signal to self 275

EXIT ASR OVERHEAD
returns to calling task 216
returns to preempting task 329

10.14 Partition Manager
PARTITION CREATE 320
PARTITION IDENT 1596
PARTITION DELETE 168
PARTITION GET BUFFER

available 157
not available 149

PARTITION RETURN BUFFER 149

Chapter 10: PSIM Timing Data 41

10.15 Region Manager
REGION CREATE 239
REGION IDENT 1625
REGION DELETE 167
REGION GET SEGMENT

available 206
not available – NO WAIT 190
not available – caller blocks 556

REGION RETURN SEGMENT
no waiting tasks 230
task readied – returns to caller 412
task readied – preempts caller 562

10.16 Dual-Ported Memory Manager
PORT CREATE 167
PORT IDENT 1594
PORT DELETE 165
PORT INTERNAL TO EXTERNAL 133
PORT EXTERNAL TO INTERNAL 134

10.17 I/O Manager
IO INITIALIZE 23
IO OPEN 18
IO CLOSE 18
IO READ 18
IO WRITE 18
IO CONTROL 18

10.18 Rate Monotonic Manager
RATE MONOTONIC CREATE 149
RATE MONOTONIC IDENT 1595
RATE MONOTONIC CANCEL 169
RATE MONOTONIC DELETE

active 212
inactive 186

RATE MONOTONIC PERIOD
initiate period – returns to caller 226
conclude period – caller blocks 362
obtain status 142

42 RTEMS PowerPC Applications Supplement

Chapter 11: DMV177 Timing Data 43

11 DMV177 Timing Data

11.1 Introduction

The timing data for RTEMS on the DY-4 DMV177 board is provided along with the target
dependent aspects concerning the gathering of the timing data. The hardware platform
used to gather the times is described to give the reader a better understanding of each
directive time provided. Also, provided is a description of the interrupt latency and the
context switch times as they pertain to the PowerPC version of RTEMS.

11.2 Hardware Platform

All times reported in this chapter were measured using a DMV177 board. All data and code
caching was disabled. This results in very deterministic times which represent the worst
possible performance. Many embedded applications disable caching to insure that execution
times are repeatable. Moreover, the JTAG port on certain revisions of the PowerPC 603e
does not operate properly if caching is enabled. Thus during development and debug,
caching must be off.

The PowerPC decrementer register was was used to gather all timing information. In
the PowerPC architecture, this register typically counts something like CPU cycles or is
a function of the clock speed. On the PPC603e decrements once for every four (4) bus
cycles. On the DMV177, the bus operates at a clock speed of 33 Mhz. This result in a very
accurate number since it is a function of the microprocessor itself. Thus all measurements
in this chapter are reported as the actual number of decrementer clicks reported.

To convert the numbers reported to microseconds, one should divide the number reported
by 8.650752. This number was derived as shown below:

((33 * 1048576) / 1000000) / 4 = 8.650752

All sources of hardware interrupts were disabled, although traps were enabled and the
interrupt level of the PowerPC allows all interrupts.

11.3 Interrupt Latency

The maximum period with traps disabled or the processor interrupt level set to it’s highest
value inside RTEMS is less than TBD microseconds including the instructions which disable
and re-enable interrupts. The time required for the PowerPC to vector an interrupt and
for the RTEMS entry overhead before invoking the user’s trap handler are a total of 202
microseconds. These combine to yield a worst case interrupt latency of less than TBD +
202 microseconds at 100.0 Mhz. [NOTE: The maximum period with interrupts disabled
was last determined for Release 4.0.0-lmco.]

The maximum period with interrupts disabled within RTEMS is hand-timed with some
assistance from the PowerPC simulator. The maximum period with interrupts disabled
with RTEMS has not been calculated on this target.

The interrupt vector and entry overhead time was generated on the PSIM benchmark plat-
form using the PowerPC’s decrementer register. This register was programmed to generate
an interrupt after one countdown.

44 RTEMS PowerPC Applications Supplement

11.4 Context Switch

The RTEMS processor context switch time is 585 bus cycle on the DMV177 bench-
mark platform when no floating point context is saved or restored. Additional execution
time is required when a TASK SWITCH user extension is configured. The use of the
TASK SWITCH extension is application dependent. Thus, its execution time is not con-
sidered part of the raw context switch time.

Since RTEMS was designed specifically for embedded missile applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the
state of the numeric coprocessor. The state of the numeric coprocessor is only saved when
an FLOATING POINT task is dispatched and that task was not the last task to utilize the
coprocessor. In a system with only one FLOATING POINT task, the state of the numeric
coprocessor will never be saved or restored. When the first FLOATING POINT task is
dispatched, RTEMS does not need to save the current state of the numeric coprocessor.

The following table summarizes the context switch times for the DMV177 benchmark plat-
form:

No Floating Point Contexts 585
Floating Point Contexts

restore first FP task 730
save initialized, restore initialized 478
save idle, restore initialized 825
save idle, restore idle 478

11.5 Directive Times

This sections is divided into a number of subsections, each of which contains a table listing
the execution times of that manager’s directives.

Chapter 11: DMV177 Timing Data 45

11.6 Task Manager
TASK CREATE 2301
TASK IDENT 2900
TASK START 794
TASK RESTART

calling task 1137
suspended task – returns to caller 906
blocked task – returns to caller 1102
ready task – returns to caller 928
suspended task – preempts caller 1483
blocked task – preempts caller 1640
ready task – preempts caller 1601

TASK DELETE
calling task 2117
suspended task 1555
blocked task 1609
ready task 1620

TASK SUSPEND
calling task 960
returns to caller 433

TASK RESUME
task readied – returns to caller 960
task readied – preempts caller 803

TASK SET PRIORITY
obtain current priority 368
returns to caller 633
preempts caller 1211

TASK MODE
obtain current mode 184
no reschedule 213
reschedule – returns to caller 247
reschedule – preempts caller 919

TASK GET NOTE 382
TASK SET NOTE 383
TASK WAKE AFTER

yield – returns to caller 245
yield – preempts caller 851

TASK WAKE WHEN 1275

46 RTEMS PowerPC Applications Supplement

11.7 Interrupt Manager

It should be noted that the interrupt entry times include vectoring the interrupt handler.

Interrupt Entry Overhead
returns to nested interrupt 201
returns to interrupted task 206
returns to preempting task 202

Interrupt Exit Overhead
returns to nested interrupt 201
returns to interrupted task 213
returns to preempting task 857

11.8 Clock Manager
CLOCK SET 792
CLOCK GET 78
CLOCK TICK 214

11.9 Timer Manager
TIMER CREATE 357
TIMER IDENT 2828
TIMER DELETE

inactive 432
active 471

TIMER FIRE AFTER
inactive 607
active 646

TIMER FIRE WHEN
inactive 766
active 764

TIMER RESET
inactive 552
active 766

TIMER CANCEL
inactive 339
active 378

Chapter 11: DMV177 Timing Data 47

11.10 Semaphore Manager
SEMAPHORE CREATE 571
SEMAPHORE IDENT 3243
SEMAPHORE DELETE 575
SEMAPHORE OBTAIN

available 414
not available – NO WAIT 414
not available – caller blocks 1254

SEMAPHORE RELEASE
no waiting tasks 501
task readied – returns to caller 636
task readied – preempts caller 982

11.11 Message Manager
MESSAGE QUEUE CREATE 2270
MESSAGE QUEUE IDENT 2828
MESSAGE QUEUE DELETE 708
MESSAGE QUEUE SEND

no waiting tasks 923
task readied – returns to caller 955
task readied – preempts caller 1322

MESSAGE QUEUE URGENT
no waiting tasks 919
task readied – returns to caller 955
task readied – preempts caller 1322

MESSAGE QUEUE BROADCAST
no waiting tasks 589
task readied – returns to caller 1079
task readied – preempts caller 1435

MESSAGE QUEUE RECEIVE
available 755
not available – NO WAIT 467
not available – caller blocks 1283

MESSAGE QUEUE FLUSH
no messages flushed 369
messages flushed 431

48 RTEMS PowerPC Applications Supplement

11.12 Event Manager
EVENT SEND

no task readied 354
task readied – returns to caller 571
task readied – preempts caller 946

EVENT RECEIVE
obtain current events 43
available 357
not available – NO WAIT 331
not available – caller blocks 1043

11.13 Signal Manager
SIGNAL CATCH 267
SIGNAL SEND

returns to caller 408
signal to self 607

EXIT ASR OVERHEAD
returns to calling task 464
returns to preempting task 752

11.14 Partition Manager
PARTITION CREATE 762
PARTITION IDENT 2828
PARTITION DELETE 426
PARTITION GET BUFFER

available 394
not available 376

PARTITION RETURN BUFFER 376

Chapter 11: DMV177 Timing Data 49

11.15 Region Manager
REGION CREATE 614
REGION IDENT 2878
REGION DELETE 425
REGION GET SEGMENT

available 515
not available – NO WAIT 472
not available – caller blocks 1345

REGION RETURN SEGMENT
no waiting tasks 544
task readied – returns to caller 935
task readied – preempts caller 1296

11.16 Dual-Ported Memory Manager
PORT CREATE 428
PORT IDENT 2828
PORT DELETE 421
PORT INTERNAL TO EXTERNAL 339
PORT EXTERNAL TO INTERNAL 339

11.17 I/O Manager
IO INITIALIZE 52
IO OPEN 42
IO CLOSE 44
IO READ 42
IO WRITE 44
IO CONTROL 42

11.18 Rate Monotonic Manager
RATE MONOTONIC CREATE 388
RATE MONOTONIC IDENT 2826
RATE MONOTONIC CANCEL 427
RATE MONOTONIC DELETE

active 519
inactive 465

RATE MONOTONIC PERIOD
initiate period – returns to caller 556
conclude period – caller blocks 842
obtain status 377

50 RTEMS PowerPC Applications Supplement

Command and Variable Index 51

Command and Variable Index

There are currently no Command and Variable Index entries.

52 RTEMS PowerPC Applications Supplement

Concept Index 53

Concept Index

There are currently no Concept Index entries.

54 RTEMS PowerPC Applications Supplement

	Preface
	CPU Model Dependent Features
	Introduction
	CPU Model Feature Flags
	CPU Model Name
	Floating Point Unit
	Alignment
	Cache Alignment
	Maximum Interrupts
	Has Double Precision Floating Point
	Critical Interrupts
	Use Multiword Load/Store Instructions
	Instruction Cache Size
	Data Cache Size
	Debug Model
	Low Power Model

	Calling Conventions
	Introduction
	Programming Model
	Non-Floating Point Registers
	Floating Point Registers
	Special Registers

	Call and Return Mechanism
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Introduction
	Flat Memory Model

	Interrupt Processing
	Introduction
	Synchronous Versus Asynchronous Exceptions
	Vectoring of Interrupt Handler
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Introduction
	Default Fatal Error Handler Operations

	Board Support Packages
	Introduction
	System Reset
	Processor Initialization

	Processor Dependent Information Table
	Introduction
	CPU Dependent Information Table

	Memory Requirements
	Introduction
	Data Space Requirements
	Minimum and Maximum Code Space Requirements
	RTEMS Code Space Worksheet
	RTEMS RAM Workspace Worksheet

	Timing Specification
	Introduction
	Philosophy
	Determinancy
	Interrupt Latency
	Context Switch Time
	Directive Times

	Methodology
	Software Platform
	Hardware Platform
	What is measured?
	What is not measured?
	Terminology

	PSIM Timing Data
	Introduction
	Hardware Platform
	Interrupt Latency
	Context Switch
	Directive Times
	Task Manager
	Interrupt Manager
	Clock Manager
	Timer Manager
	Semaphore Manager
	Message Manager
	Event Manager
	Signal Manager
	Partition Manager
	Region Manager
	Dual-Ported Memory Manager
	I/O Manager
	Rate Monotonic Manager

	DMV177 Timing Data
	Introduction
	Hardware Platform
	Interrupt Latency
	Context Switch
	Directive Times
	Task Manager
	Interrupt Manager
	Clock Manager
	Timer Manager
	Semaphore Manager
	Message Manager
	Event Manager
	Signal Manager
	Partition Manager
	Region Manager
	Dual-Ported Memory Manager
	I/O Manager
	Rate Monotonic Manager

	Command and Variable Index
	Concept Index

