Implementing an Ethernet Connection to the CESR MPM
Charlie Strohman

August 9, 2006
[image: image1.png]CESR29 MULTI-PORT MEMORY XBUS
DIGITAL SYSTEM PROCESSOR
ALPHASTATION 500 (MPM) VME CPU BOARD
68020 20 MHz
VMEBUS SYSTEM PSOS INTERFACE
PCI TO VME PCI TO VME CONTROLLER VME TO MPM CRATE XBUS
PCI TO VME MEMORY MASTER
] 8 MBYTES ~Ehs PRIVER
ALPHASTATION 500 SEMAPHORE
OPEN VMS VME TO MPM BPM
T T T T T EEE e E 1
PCI TO VME GRINNELL . TIGER SHARC !
VGS : DSP :
VME TO MPM I
|
SLAVE : I SERIAL
I : XBUS
VME TO MPM I !
SLAVE I COLDFIRE
VMEBUS : CPU BOARD I
MVMES 500 VME TO MPM 1 RTEMS 1
I = ‘
]
|
_ VAX TO MPM] I
SLAVE - !
| vETOMPM |/ | T
_VME TO MPM SLAVE
- Y | e BEM .
VME TO MPM
I A TIGER SHARG
LNX180C DSP
T INUX VME TO MPM

SLAVE

VME TO MPM
SLAVE COLDFIRE
CPU BOARD

RTEMS

VME TO MPM
SLAVE

——]

ETHERNET

CESR CONTROIL SYSTEM NETWORK ARCHITECTURE

Goal

The goal of this project is to provide high speed, low latency access to the MPM system for computers that do not have direct hardware connections. There should not be any degradation of the existing VMS-based control system.

The diagram shows an abbreviated version of the CESR control system network, including some of the computerized instrumentation (BPMs) that we are deploying. The new feature is the MVME5500 computer on a VMEbus backplane, with a hardware link to the MPM and an Ethernet link to the network.

Current Status

Six Alpha/VMS systems have interfaces from their internal bus to a VMEbus card. The VMEbus cards are plugged into three intermediate backplanes. CESR26 and CESR29 share one backplane (shown in the diagram); CESR27 and CESR2D share another; and CESR28 and CESR2B share the third. Each of the three intermediate backplanes has a VME-to-MPM interface that we designed here.

Programs running on the VMS machines map the MPM address space into their own process space, so that the MPM looks like a large array. An access to any location in that array causes a 24-bit address & 32-bit data transfer across the hardware onto the MPM backplane. A collection of database access routines is available for linking into applications.
Programs running on Linux or Windows machines use the “MPMnet” library. This provides routines that pack the user’s request (like “vxgetn”) into an Ethernet packet and send it to an MPMnet server program on one of the aforementioned VMS machines. The server program unpacks the request and makes the appropriate MPM accesses through its mapped array. It then gathers the results and sends them across the network back to the user. Each user runs his own copy of the server program.
Initial Proposal

A VMEbus CPU board with an Ethernet interface will be purchased and plugged into one of the intermediate backplanes. A version of the MPMnet server will be created for this board. This server will only support a few basic commands. The programming language will be ‘c and the environment will be RTEMS.

Ultimate Proposal

1. The VMEbus CPU will have its own intermediate backplane.

2. A new VME-to-MPM interface will be developed. It should have less latency than the current model that was designed in the late 1980’s.

3. The server software will support the full suite of MPM commands.

4. The server will support multiple clients.
Error handling
Errors tend to fall into one of two categories. The first are caused by error in the application programs, like misspelling a mnemonic or specifying illegal element numbers. These types of errors are non-fatal. The second are caused by extreme conditions in the database or the hardware. Some examples are when the Xbus processor doesn’t complete an operation (hung handler), when a function retrieves a bad pointer to a database structure (ngptr), or when the database is refreshed. These are fatal.

Errors are not supposed to be tolerated; they are supposed to be fixed. We have not expected application programs to implement any error checking or handling. When non-fatal errors are detected, the database routines print out messages and either stop or return control to the application. In the second case, the application can generally continue. In the MPMnet environment, notifying the user of non-fatal errors is done in the client functions, using a status code passed over the network. The server code has some extra error-checking functions that try to detect conditions that would normally cause a program to stop.
Fatal errors cause programs to print out a message and then immediately stop. This may prevent damage to the database or the hardware. This gets the attention of users on the VMS systems. A mechanism needs to be developed to pass information about fatal errors back to MPMnet client, rather than just having the server disappear and the client hang until a timeout occurs. Functions that currently just stop would need to communicate with the client first.

Unknowns

This is the place to think about things that might cause problems and require major changes in the way thing operate.
· Security: Currently a user has to logon to a VMS system and start a server program before his client can run. What will be needed for the VMEbus server?
· File I/O :
· Screen I/O: The ‘type’ command

· ‘fortran’ vs. ‘c’ issues :
Action Items and Manpower Estimates
1. Buy an MVME5500 VMEbus CPU board. Install it in the MPM test system in Charlie’s office. (1 day)

2. Setup RTEMS for the MVME5500. This runs on linux (LNX180C) (1 day)

3. Create a minimal version of the MPMnet server that runs on the MVME5500 and handles the network connection. It does not handle any MPM access. (5 days)

4. Configure and test a Linux client program that uses the server.
5. Add support for a simple routine that accesses the MPM. The “vnumbr” routine is an ideal candidate. Details of the conversion effort are shown later. (5 days)

6. Expand the functionality of the server program to support all required routines. Complicated stuff like magnet clock control may not be needed. (20 days)

7. Expand the functionality of the server program to support multiple clients. (5 days)

8. Move the CPU board to one of the intermediate crates. (1 day)

9. Use the system for real operations.
10. Design and build a new VME-to-MPM interface. (30 days)

11. Install the CPU board in its own intermediate crate with the new interface. (1 day)

Programming to Implement a Demonstration System

A demonstration system might allow a client program to determine how many elements are in a particular node. This uses the “vnumbr” function. The VMEbus computer would need to run the MPMnet server and support the “vnumbr” function.
The conversion effort involves:

· Converting the MPMnet server to RTEMS
· Converting the MPM database code to ‘c’ and RTEMS
· Dealing with the different hardware environments (VME vs. PCI) to access the MPM

· Handling errors

The list of files that would need to be handled for the “vnumbr” support are:
· Fortran include files:

· [cesr.cc]mpm_dbincl.inc (459 lines)
· [cesr.cc]mpm_dbincl_common.inc (378 lines)

· [cesr.cc]pci_mpm.inc (8 lines)
· [cesr.cc]pci_hdwdef.inc (13 lines)
· Fortran programs and functions:

· [cesr.cc.axp]vnumbr.f77 (18 lines)
· Fortran include code snippets (from [cesr.cc.apod]):

· mnemc_to_nam_ptr_only.apod (32 lines)
To make the system do some useful work, one needs to add functions like “vxgetn” to read data from the Xbus. The additional files to consider and convert are:
· Fortran include files:

· [cesr.cc]mpm_error_codes.inc (3 lines)

· [cesr.cc]mpm_error_codes_common.inc (64 lines)

· [cesr.vax_code.lib]irp_status.inc (9 lines)

· Fortran programs and functions:

· vxgetn.f77 (167 lines)

· vstdpt.f77 (35 lines)

· pci_kcbook.f77 (199 lines) *does file I/O

· vmgpts.f77 (16 lines)

· vindpt.f77 (40 lines)

· pci_exit.f77 (12 lines) *exits program

· ngptr.f77 (36 lines) *exits program, does file I/O

· check_ele_error.f77 (223 lines) *does file I/O

· mnemnum_error.f77 (54 lines) *does file I/O

· free_own_packet.f77 (20 lines)

· vupctl.f77 (70 lines)

· hung_handler.f77 (47 lines) *does typeout

· CESR utilities

· csr_tstamp

· csr_sleep

· csr_bell

· strout

· in4dec2

· goodbye

· Fortran include code snippets (from [cesr.cc.apod]):

· init_xbsmsk_and_ptr_nam.apod (10 lines)

· loop_irp_done_then_test_error (26 lines) *exits program

· mnemc_to_ptr_to_nam.apod (68 lines) *exite program

· VMS features

· File access “lunget”, “open”, “read”, “write”, “close”

· “str$upcase”

· Typeout with ‘type’ command

Implementation Notes MVME5500
1. The MVME5500 maps a ½ Gbyte A32/D32 space as follows:

VME address

MVME5500 address

0x0100 0000 thru 0x2000 0000
0x9100 0000 thru 0xb000 0000

2. The modified VME-to-MPM master has pin 19 of U13 (PAL) lifted from the socket. This disables sending the 32-bit mode signal to the slave, so that the slave generates a 24-bit address modifier code even though the master was addressed with a 32-bit address modifier.

The VME-to-MPM master only decodes the lower 24 address bits. It passes any transaction where the lower 24 bits are in the range 0x0030 0000 thru 0x00ff fffc regardless of the value of the high 8 address bits.
For now, access the MPM by ‘or’ing 0x9100 0000 with the desired MPM address. Macros should be created to do this. A possible pair is:

Data = Mget(addr);
!read a 32-bit word from MPM(addr)

Mput(addr, data);
!write a 32-bit word to MPM(data)

From the MVME5500 debugger, use “mmw –a91400000” to access the first MPM RAM location. The full address space is:

MVME5500

MPM

0x91300000 – 0x91300040
FIFO

0x91400000 – 0x917ffffc
Low RAM

0x91800000 – 0x91bffffc
Semaphore

0x91c00000 – 0x91fffffc
High RAM

3. The front panel Ethernet port labeled “ENET2” corresponds to “/dev/enet0”, while the port labeled “ENET1” corresponds to /dev/enet1”. Use “ENET2” for 10/100 connections.
4. Use the “gevEdit” command to configure the board. The following shows the use of “gevEdit” to set the IP address of the /dev/enet0 port on the board, then view the results:
MVME5500> gevEdit mot-/dev/enet0-cipa

(Blank line terminates input.)

192.168.1.60

Update Global Environment Area of NVRAM (Y/N)? y

MVME5500> gevList

mot-/dev/enet0-cipa

Total Number of GE Variables =1, Bytes Utilized =33, Bytes Free =3559

MVME5500> gevShow

mot-/dev/enet0-cipa=192.168.1.60

Total Number of GE Variables =1, Bytes Utilized =33, Bytes Free =3559

Set the following:

mot-/dev/enet0-cipa=192.168.1.60

mot-/dev/enet0-sipa=192.168.1.29

mot-/dev/enet0-gipa=192.168.1.210

mot-/dev/enet0-snma=255.255.255.0

Implementation Notes RTEMS

1. To set up the environment on LNX180C correctly for building stuff in your own home dir, you have to source one of the following scripts in /nfs/cesr/instr/rtems:

 rtems-i386.csh

 rtems-mvme5500.csh

 rtems-uC5282.csh
2. The 10/100 ethernet port on the MVME5500 uses:
#define RTEMS_BSP_NETWORK_DRIVER_NAME "gt1"

#define RTEMS_BSP_NETWORK_DRIVER_ATTACH rtems_GT64260eth_driver_attach

While the Gbit port uses:
#define RTEMS_BSP_NETWORK_DRIVER_NAME "IGHZ1"

#define RTEMS_BSP_NETWORK_DRIVER_ATTACH rtems_i82544EI_driver_attach

The 10/100 ‘defines’ are in the ‘bsp.h’ file, so they don’t need to be in the application’s “networkconfig.h”. If you need to use the Gbit port, look at the ‘bsp.h’ file and figure out how to override the default. Maybe some mechanism is provided?
3. RTEMS object names are limited to 32 bits, or 4 ASCII characters.
Downloading to the VME5500
1. Use ‘ftp’ to move the “.bin” file from lnx180c to cesr29::u:[cesr.vxworksboot].

ftp cesr29

user (now supply username/password)

binary

cd vxworksboot

put Mnet_rt5500_server.bin

bye

2. Use ‘tftp’ to download the file to the MVME5500.

tftpGet –v –f/cesr/vxworksboot/Mnet_rt5500_server.bin

netShut

go –a5c3000

