Weekly Meeting

Aug. 24th, 2018

Overview:

We can assume the map can be represented by a Lie transformation and factorized as

$$\mathbf{M} = Re^{:f_3:}e^{:f_4:}\cdots$$

To simplify this map, i.e., separate the contribution from different orders, we can construct a map M3

$$U = e^{:F_3:}Me^{:-F_3:}$$

Where F3 is a generator that removes resonance driving terms from

 $e^{:f_3:}$

The f_i's are polynomials of ith order (in phase space coord.)

These f_i's can be written as:
$$f_{jklm} = \frac{h_{jklm}}{1 - e^{i2\pi[(j-k)v_x + (l-m)v_y]}}$$

$$F = \sum_{jklm} f_{jklm} \varsigma_x^+ \varsigma_x^- \varsigma_y^+ \varsigma_y^- = F_3 + F_4 + \cdots$$

Where F is a generator constructed from the RDT's (hiklm) which give the Fourier coefficients f_i 's of the eigenvectors of the rotation operator.

Overview:

RDT's are lattice dependent:

$$h_{jklm} = c \sum_{i=1}^{N} S_2 \beta_{xi}^{(j+k)/2} \beta_{yi}^{(l+m)/2} e^{i[(j-k)\mu_{xi} + (l-m)\mu_{yi}]}$$

The plan:

- 1) Construct a RDT for a given, simple lattice.
- 2) Construct the map
- 3) Track the map and study the phase space

The problem: this is a lot harder than I originally thought...

1) Hard to know if the method is right because this hasn't been done before.. Solution: Do this procedure for a simple sextupole lattice, then a simple octopole lattice?

Progress

• (See Mathematica)

"Ideas"

- Can we skip the "going backwards" part of this? (Go straight into understanding which RDTs contribute the most to DA minimizations)
- Stas' question: During optimization, how do optimizers/the people doing the opt. avoid/ address {h_{iklm}} = 0 solutions?

Help

- Mike: Have you personally calculated the RDT's (analytically) for a sextupole?
- Jim: If I want to start constructing a Jacobian...
 - Concerns about linearly dependent RDTs
 - Concerns about rank

Synopsis of Meeting:

- Keep going! Keep working on building the machinery for "going backwards"
- Use/find any resources to help create this machinery:
 - http://physics.indiana.edu/~shylee/p571/Jing_Yichao/ nonlinear.pdf
 - http://pcwww.liv.ac.uk/~awolski/Teaching/Cockcroft/
 NonlinearDynamics/NonlinearDynamics-Part7 Handout.pdf