Weekly Meeting

Aug. 24 ${ }^{\text {th }}, 2018$

Overview:

We can assume the map can be represented by a Lie transformation and factorized as

$$
\mathrm{M}=\operatorname{Re}^{e^{: f_{3}} e^{: f_{4} t}} \ldots
$$

To simplify this map, i.e., separate the contribution from different orders, we can construct a map M3

$$
U=e^{: F F_{3}: M e^{:-F_{3}}:}
$$

Where F3 is a generator that removes resonance driving terms from
The f_{i} 's are polynomials of $\mathrm{i}^{\text {th }}$ order (in phase space coord.)
These f's can be written as: $f_{j k l m}=\frac{h_{j k l m}}{1-e^{i 2 \pi\left[(j-k) v_{x}+(l-m) v_{y}\right]}}$

$$
F=\sum_{j k l m} f_{j k l m} \varsigma_{x}^{+} \varsigma_{x}^{-} \varsigma_{y}^{+} \varsigma_{y}^{-}=F_{3}+F_{4}+\cdots
$$

Where F is a generator constructed from the RDT's $\left(\mathrm{h}_{\mathrm{jkkm}}\right)$ which give the Fourier coefficients $f_{i}^{\prime} s$ of the eigenvectors of the rotation operator.

Overview:

RDT's are lattice dependent:

$$
h_{j k l m}=c \sum_{i=1}^{N} S_{2} \beta_{x i}^{(j+k) / 2} \beta_{y i}^{(l+m) / 2} e^{i\left[(j-k) \mu_{x i}+(l-m) \mu_{y i}\right]}
$$

The plan:

1) Construct a RDT for a given, simple lattice.
2) Construct the map
3) Track the map and study the phase space

The problem: this is a lot harder than I originally thought...

1) Hard to know if the method is right because this hasn't been done before.. Solution: Do this procedure for a simple sextupole lattice, then a simple octopole lattice?

Progress

- (See Mathematica)

"Ideas"

- Can we skip the "going backwards" part of this? (Go straight into understanding which RDTs contribute the most to DA minimizations)
- Stas' question: During optimization, how do optimizers/the people doing the opt. avoid/ address $\left\{\mathrm{h}_{\mathrm{jk} / \mathrm{m}}\right\}=0$ solutions?

Help

- Mike: Have you personally calculated the RDT's (analytically) for a sextupole?
- Jim: If I want to start constructing a Jacobian...
- Concerns about linearly dependent RDTs
- Concerns about rank

Synopsis of Meeting:

- Keep going! Keep working on building the machinery for "going backwards"
- Use/find any resources to help create this machinery:
- http://physics.indiana.edu/~shylee/p571/Jing Yichao/ nonlinear.pdf
- http://pcwww.liv.ac.uk/~awolski/Teaching/Cockcroft/ NonlinearDynamics/NonlinearDynamics-Part7Handout.pdf

