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Abstract

A robust design is insensitive to small parameter changes, i.e. engineering tolerances. For the
dynamic acceptance optimization of the SLS-2 storage ring a robust design strategy is established,
which is based on a complete suppression of 1st and 2nd-order sextupole terms by phase cancellation.
A modification of the 7-bend achromat of SLS-2 shows better linear and nonlinear performance
compared to the lattice considered as reference for the conceptual design report: the emittance (zero
current) is reduced from 139 pm to 101 pm, while the robustness of dynamic aperture and momen-
tum acceptance is significantly increased, thus strengthening confidence that off-axis injection and
approx. 10 hours of beam lifetime are feasible.

This note starts with a brief description of the two lattices and the general design strategy. The
beam dynamics framework is presented comprehensively although in brief. The design of the new
lattice is described and its performance without and with engineering tolerances is explored, where
in particular frequency maps for bare and real lattice prove the robustness. An appendix presents
the same calculation for the CDR reference lattice for comparison, a collection of engineering
tolerances, and a brief excursus on a round beam scheme.

Based on this work the reference lattice for the CDR will be changed soon. However with regard
to technology the parameter changes are moderate and don’t discard design work already done for
magnets, vacuum etc.
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1 Introduction

1.1 Requirements

The upgrade of the Swiss Light Source (SLS) is based on a new storage ring providing at least 30 times
lower equilibrium emittance than the present 5.5 nm at 2.4 GeV, i.e. a value in the order of 150 pm
(including increase due to intra-beam scattering).

An off-axis accumulation and top-up injection based on the existing booster synchrotron is included
in the baseline design, whereas on-axis schemes are considered as advanced operation modes or future
upgrades. Off-axis injection is realized with an orbit bump formed by three dipole kickers, where the
center kicker is shielded (“anti-septum”) [1], or with a single nonlinear kicker. In both cases a minimum
horizontal on-momentum aperture of Ax,y ∼ ±5 mm is required.

Due to the high particle density in the bunch, the beam lifetime is dominated by Touschek scattering.
In order to provide a beam lifetime of 5–10 hrs (already including bunch lengthening from a harmonic
RF-system) a lattice momentum acceptance of δacc = 5% is required. A summary is given by Tab. 1

Parameter Value
On-momentum dynamic aperture Ax,y [mm] ±5

Off-momentum dynamic aperture δ [%] 5

Touschek lifetime [hrs] 5-10

Table 1: Beam Dynamics Requirements.

1.2 Lattice Concept

Exploiting the inverse cubical scaling of emittance with the number of lattice cells, the cell number
is increased through miniaturization of magnets. This concept results in densely packed multi-bend
achromat (MBA) arcs with small beam pipe dimensions [2]. In case of SLS-2 a ring lattice made built
from twelve identical 7BA-arcs in 290.4 m circumference, and an inner beam pipe radius of 10 mm
(magnet bore radius 13 mm) was found to provide the desired emittance reduction. However, simply
scaling existing lattice designs from other places to the SLS dimensions would have resulted in an
emittance in the range of 0.5–1.0 nm, which is considered insufficient. Another factor 4–5 in emittance
reduction is gained from a novel type of lattice cell based on longitudinal gradient bends and anti-
bends [3–10]. The 7BA of SLS-2 is made from five core cells of 5◦ deflection angle and two dispersion
suppressor cells of 2.5◦, giving a total arc deflection of 30◦.

1.3 Design strategy

Optimization of non-linear optics is the main challenge for an ultra-low emittance lattice like SLS-2
in order to provide sufficient dynamic acceptance while strong non-linearities are introduced by the
sextupoles needed for correction of chromaticity.

A robust solution is required. Generally, for a robust system the performance is not significantly
degraded for small parameter changes. Especially, it means to not only know the solution of the
nonlinear equations governing the dynamics of the system but also the derivatives.

In summary, the non-linear design strategy is to implement a higher order achromat by [11–15]:

1. introduce a unit cell with two chromatic sextupole families,
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2. choose the cell tune so that all the resonance driving terms up to second order in sextupole
strength are cancelled over m unit cells,

3. control the on-momentum tune footprint by three octupole families (trims) in the matching
sections of the super periods; the impact is tempered by the n-fold symmetry of the lattice,

4. and control the off-momentum tune footprint by two octupole families (trims) in the unit cells.

Item 2, cancellation by phase, is explicitly shown in Tab. 2 for two relevant cases based on m = 5 and
m = 7 unit cells with appropriate cell tunes. Note that the horizontal cell tune has to be rather large in
order to realize small emittance, while the vertical cell tune is free basically. Also note that all regular
resonances contain even multiples of the vertical tune, so the cancellation considers combinations of
νx and 2νy.

Form = 5 cells a tune advance of 0.4 = 1/5 horizontal and 0.1 = 0.5/5 vertical provides cancellation of all
1st-order sextupole and all 2nd-order sextupole, resp. 1st-order octupole terms – except the 2nd-order
term driving 2νx + 2νy resonances, which is amplified coherently.

For m = 7 cells a tune advance of 3/7 ≈ 0.429 horizontal and 1/7 ≈ 0.143 vertical provides cancellation
of all 1st-order sextupole and all 2nd-order sextupole, resp. 1st-order octupole terms.

Eventually, for a realistic design, space and engineering considerations, etc. impose additional, often
conflicting constraints requiring compromises for the performance and technical design. In conclusion,
to design a magnetic lattice for a state-of-the-arts ring-based synchrotron light source, is a nontrivial,
nonlinear optimization problem.

Higher Order Achromats

First Order Second Order Third Order

Geometric Chromatic Geometric Geometric

Cell

1 0.400 0.100 2/5, 0.5/5 0.40 1.20 0.20 0.60 0.80 0.20 1.60 0.40 0.60 1.00 2.00 0.00 0.80 1.00 1.40

2 0.800 0.200 0.80 2.40 0.40 1.20 1.60 0.40 3.20 0.80 1.20 2.00 4.00 0.00 1.60 2.00 2.80

3 1.200 0.300 1.20 3.60 0.60 1.80 2.40 0.60 4.80 1.20 1.80 3.00 6.00 0.00 2.40 3.00 4.20

4 1.600 0.400 1.60 4.80 0.80 2.40 3.20 0.80 6.40 1.60 2.40 4.00 8.00 0.00 3.20 4.00 5.60

5 2.000 0.500 2.00 6.00 1.00 3.00 4.00 1.00 8.00 2.00 3.00 5.00 10.00 0.00 4.00 5.00 7.00

Geometric Chromatic Geometric Geometric

Cell

1 0.429 0.143 3/7, 1/7 0.43 1.29 0.14 0.71 0.86 0.29 1.71 0.57 0.57 1.14 2.14 -0.14 1.00 1.00 1.57

2 0.857 0.286 0.86 2.57 0.29 1.43 1.71 0.57 3.43 1.14 1.14 2.29 4.29 -0.29 2.00 2.00 3.14

3 1.286 0.429 1.29 3.86 0.43 2.14 2.57 0.86 5.14 1.71 1.71 3.43 6.43 -0.43 3.00 3.00 4.71

4 1.714 0.571 1.71 5.14 0.57 2.86 3.43 1.14 6.86 2.29 2.29 4.57 8.57 -0.57 4.00 4.00 6.29

5 2.143 0.714 2.14 6.43 0.71 3.57 4.29 1.43 8.57 2.86 2.86 5.71 10.71 -0.71 5.00 5.00 7.86

6 2.571 0.857 2.57 7.71 0.86 4.29 5.14 1.71 10.29 3.43 3.43 6.86 12.86 -0.86 6.00 6.00 9.43

7 3.000 1.000 3.00 9.00 1.00 5.00 6.00 2.00 12.00 4.00 4.00 8.00 15.00 -1.00 7.00 7.00 11.00
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Table 2: Resonance Cancellations for ν̄cell = [3/7, 1/7] vs. [2/5, 0.5/5] .

1.4 The 139 pm Lattice

The reference lattice for the conceptual design report is a period n = 12 lattice based on 7BA-arcs and
5.4 m straight sections providing a zero current emittance of 139 pm.

Considering a phase cancellation based on the m = 5 core cells of the achromat, a cell tune advance
of 0.4 = 1/5 horizontal and 0.1 = 0.5/5 vertical provides cancellation of 1st and 2nd-order terms except
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the one related to 2νx + 2νy resonances, as shown in Tab. 2.

A Multi-Objective Genetic Algorithm (MOGA) had been established to optimize the nonlinear optics:
dynamic apertures for δ = 0, ±3% and the size of the tune footprint, i.e. amplitude dependent tune
shifts (ADTS) and chromatic tune shifts, were chosen as objectives for the minimizer [16, 17].

The vertical cell tune was included for the MOGA numerical optimizations which lead to a change of
νy from 0.1 to 0.083 ≈ 0.5/6, indicating that the cancellation pattern implicitly switched to a 6-cell
base for the vertical.

Dynamic acceptances as large as required were achieved for the bare (i.e. error free) lattice, but
further analysis revealed that the solution is not robust, which is mainly due to the incomplete 2nd-
order cancellation: application of the same benchmarks used for the robust approach and solution
presented below are shown in Appendix A.

1.5 The 101 pm Lattice

A complete 2nd-order cancellation based onm = 7 cells is achieved at a cell tune advance of 3/7 ≈ 0.429
horizontal and 1/7 ≈ 0.143, see Tab. 2. However using 7 cells in a 7BA requires to include the dispersion
suppressor and matching cells into the cancellation pattern. This is only feasible to a certain extent,
since optical functions deviate in these regions. In particular there is no dispersion, so complete
cancellation cannot be achieved for the chromatic resonance modes. However, the cancellation does
not need to be perfect. Anyway, some detuning of the regular pattern has to be accepted in order to
control ADTS and matching cell quadrupole contributions to second order chromaticity.

On the other hand, the reduction of horizontal cell tune provides a significant further reduction of
emittance down to 101 pm. Thus the performance of the lattice is increased both with respect to
brightness and to dynamic acceptance (i.e. injection efficieny and beam lifetime). Note, however,
that the lattice studied here contains a few more octupoles than space is available and thus has to be
considered an academic exercise so far, but there is confidence to remove these conflicts soon.

Fig. 1 shows the optical functions of the lattice 101pm_s7o7_a, which look quite similar to the 139 pm
lattice. The matching section has been redesigned replacing the quadrupole triplets by quadruplets,
which allows a variation of global tunes without affecting the achromat and even led to a slight
increase of straight length to 5.52 m. Table 3 displays the most important parameters of both latttices
in comparison to the present SLS. Note, due to the anti-bends, the total absolute deflection angle of
the upgrade ring amounts to more than 360◦, and the momentum compaction factor (MCF) becomes
negative. Parameters are for a lattice with 12 identical arcs disregarding possible superbends. The
SLS-lattice however includes 3 superbends and the FEMTO insertion for laser beam slicing, which also
increases the absolute deflection angle to > 360◦.
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Figure 1: Optical functions of the 101 pm lattice. The orange lines mark the five core cells of the 7BA.

Table 3: Parameters of the present SLS lattice and the 139 pm and 101 pm SLS-2 lattices
SLS 139 pm 101 pm

Circumference C [m] 288.0 290.4 290.4
Total absolute deflection Σ|φ| [◦] 375.0 584.6 561.6
Working point νx,y 20.4, 8.7 37.2, 10.3 39.2, 15.3
Chromaticity ξx,y −67, −21 −67, −40 −95, −35
Momentum compaction α 6.04 · 10−4 −1.36 · 10−4 −1.31 · 10−4

Horizontal emittance ε [pm] 5670 139 101
Energy spread σ∆E/E 0.88·10−3 1.03·10−3 1.01·10−3

Energy loss/turn ∆Erad [keV] 549 570 545
Damping times τx,y,s [ms] 8.5, 8.4, 4.2 4.6, 8.2, 6.6 5.0, 8.5, 6.7

2 Beam Dynamics Model: Analytic and Numerical Methods

2.1 The Hamiltonian

The relativistic Hamiltonian for a charged particle in an external electromagnetic field for the co-moving
system customarily used to model particle accelerators is (x̄ = [x, px, y, py, c0t, pt]) [15]

H (x̄; s) = − (1 + h0x)

 q
p0
As +

√
1 +

2

β0
pt + p2

t −
(
px −

q

p0
Ax

)2

−
(
py −

q

p0
Ay

)2
+ qΦ (1)

where h0 (s) is the local curvature, pt the canonical longitudinal momentum coordinate and β, γ the
relativistic factors

h0 (s) ≡ 1

ρ0 (s)
, pt ≡

E − E0

p0c0
, γ =

1√
1− β2

=
E

m0c2
0

. (2)

Hence, in the limit of negligible classical radiation (no radiation damping) and no quantum fluctua-
tions (no photon emission), e.g. proton and ion accelerators, the phase-space dynamics is like for an
incompressible fluid.

For ultra relativistic beams β0 → 1, the momentum deviation is sometimes used instead
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δ ≡ p− p0

p0
, (1 + δ)2 =

E2 −
(
m0c

2
0

)2
(p0c0)2 =

(E − E0)2 + 2E0 (E − E0) + (p0c0)2

(p0c0)2 = 1 +
2

β0
pt + p2

t

≈ (1 + pt)
2 (3)

which leads to

H (x̄; s) = − (1 + h0x)

 q
p0
As +

√
(1 + δ)2 −

(
px −

q

p0
Ax

)2

−
(
py −

q

p0
Ay

)2
+ qΦ

=
p2
x + p2

y

2 (1 + δ)
− h0x− (1 + h0x)

q

p0
As + . . . (4)

The expanded expression is the small angle approximation; which is “exact” (not expanded) in δ.

Alternatively, one may introduce

pE ≡
E − E0

E0
(5)

for which

(1 + δ)2 =
E2 −

(
m0c

2
0

)2
(p0c0)2 =

E2
0

(p0c0)2

(E − E0)2 + 2E0 (E − E0) + (p0c0)2

E2
0

= 1 +
2

β2
0

pE +
1

β2
0

p2
E . (6)

However, the initial Hamiltonian would then be scaled with energy E0 vs. p0 and as a result the
transverse momenta as well.

2.2 Magnetic Multipole Expansion

The magnetic multipole expansion is introduced by [15]

By (s) + iBx (s) = (Bρ)
∞∑
n=1

(ian (s) + bn (s))
(
reiϕ

)n−1

= (Bρ)
∞∑
n=1

(ian (s) + bn (s)) (x+ iy)n−1 . (7)

with the magnetic rigidity
(Bρ) ≡ p

q
. (8)

The vector potential is obtained from the Poincaré gauge, r̄ · Ā = 0 [18]:

Ā (r̄, t) = −r̄ ×
1ˆ

0

B̄ (ur̄, t)u du, φ = −r̄ ·
1ˆ

0

B̄ (ur̄, t)u du (9)

The curl B̄ ≡ ∇× Ā in the curvilinear co-moving system is [19]

Bx =
∂zAy − ∂yAz
1 + h0 (s)x

, By =
h (s)As

1 + h0 (s)x
+ ∂xAs −

∂sAx
1 + h0 (s)x

, Bz = ∂yAx − ∂xAy. (10)
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2.3 Hamiltonian Flow

Hamilton’s equations are an infinitesimal map

x′ = [−H,x] = ∂pxH, p′x = [−H, px] = −∂xH. (11)

with the Poisson bracket defined by

[f, g] ≡
6∑

k=1

(
∂qkf∂pkg − ∂pkg∂qkf

)
. (12)

The flow is symplectic1, i.e., the symplectic 2-form

ω
(
qi, pi

)
≡ −dqr ∧ dpr =

1

2
ωrsdq

rdps, dω = 0, ωij ≡
[

0 −In
In 0

]
(13)

is an (differential) invariant
L−Hω = 0 (14)

and it follows that the phase-space volume is preserved (Liouville’s theorem)

ωn
(
qi, pi

)
=

(∑
k

dqk ∧ dpk

)n
=
∏
k

dqk ∧ dpk + . . . = const. (15)

The inverse matrix is obtained from

Ωirωrj = δij , Ωij =

[
0 In
−In 0

]
(16)

and the corresponding (global) symplectic (quadratic) form

Ω (x̄1, x̄2) ≡ x̄T
1 Ωx̄2 (17)

is invariant under linear symplectic transformations

x̄T
1 Ωx̄2 → (Mx̄1)T ΩMx̄2 = x̄T

1 M
TΩMx̄2 (18)

for which
MTΩM = Ω, (19)

also known as symplectic matrices.

Note that the Poisson bracket can be defined as

[f, g] ≡ Ωrs∂rf∂sg. (20)

2.4 The Poincaré Map

The (finite) Poincaré map can be expressed as a Lie series (x̄ ≡
[
qi, pi

]
) [20]

x̄1 =Mx̄0 = eL−H x̄0 ≡
∞∑
k=0

Lk−H
k!

x̄0 =

(
1− L−H

1!
+
L2
−H
2!

+ . . .

)
x̄0 (21)

1Greek for intertwined
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where the Lie derivative is the Poisson bracket:

Lfg (x̄) = [f, g] . (22)

Linearizing by expanding the Hamiltonian to second order in the phase space coordinates gives [15]

H2 (x̄; s) =
p2
x + p2

y

2 (1 + δ)
− b1 (s)xδ +

b21 (s)

2
x2 +

b2 (s)

2

(
x2 − y2

)
+O (x̄)3 . (23)

For a periodic system, the homogeneous term is removed by introducing a momentum dependent fixed
point

Mη̄(1)δ = η̄(1)δ (24)

where η̄(1) is the linear dispersion function.

The motion around the fixed point can then be integrated for a piecewise constant potential, leading
to the corresponding transport matrices, which are symplectic, see Eq. 19. The linear one-turn map is
obtained by concatenation, i.e., matrix multiplication, and can be diagonalized

M = ARA−1, R =

[
cos (2πνx) sin (2πνx)
− sin (2πνx) cos (2πνx)

]
, A =

[ √
βx 0

− αx√
βx

1√
βx

]
(25)

where [αx, βx, 2πνx] are the Courant & Snyder parameters [21]. The system is stable for

|Tr {M}| < 2. (26)

Similarly, the linear optics functions along the lattice are obtained from

M01 = A1R01A
−1
0 with (27)

R01 =

[
cos (µx) sin (µx)
− sin (µx) cos (µx)

]
, Ak =

[ √
βx,k 0

− αx,k√
βx,k

1√
βx,k

]
, A−1

k =

 1√
βx,k

0
αx,k√
βx,k

√
βx,k

 . (28)

The linear action-angle variables are

2Jx ≡ ‖x̃‖2 = x̃Tx̃ = q̃2
x + p̃2

x, φ ≡ arctan

(
p̃x
q̃x

)
(29)

with the Floquet space vector
x̃ = A−1x̄, x̃ ≡ [q̃x, p̃x] . (30)

Similar expressions hold for the vertical and longitudinal planes.

2.5 Symplectic Integrator

The expanded Hamiltonian from Eq. 4 can be split into a “drift” and “kick” part

H (x̄; s) = Hd (px, py; s) +Hk (x, y; s) (31)

where

Hd (px, py; s) ≡
p2
x + p2

y

2 (1 + δ)
, Hk (x, y; s) ≡ −h0 (s)x− (1 + h0 (s)x)

q

p0
As (x, y; s) (32)
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for which Hamilton’s equations can be integrated to obtain the corresponding maps

Md (s) ≡ esL−Hd , Mk (s) ≡ esL−Hk . (33)

A 2ndorder symplectic integrator is obtained by

M2 =Md

(
L

2

)
Mk (L)Md

(
L

2

)
+O (L)3 =

(
Md

(
L

2n

)
Mk

(
L

n

)
Md

(
L

2n

))n
+O

(
L

n

)3

(34)

where the second expression is for n integration steps. Given an order 2n symplectic integrator, an
order 2n+ 2 is obtained by [22–24]

M2n+2 =M2n (α2L)M2n (α1L)M2n (α2L) +O (L)2n+3 (35)

where

α1 ≡ −
2

1
2n+1

2− 2
1

2n+1

, α2 ≡
1

2− 2
1

2n+1

. (36)

For numerical simulations (tracking) the equations of motion are integrated with a 4th-order symplectic
integrator; i.e. a O

(
∆s5

)
error is left for each integration step, whereas the phase-space volume is

conserved. The latter is crucial for modeling on the time scale of a damping time (approx. 103 turns).

2.6 Control of the Emittance

The horizontal emittance is controlled by controlling the linear dispersion action

Hx ≡ ‖η̃‖2 = η̃Tη̃, η̃ = A−1η̄, η̄ ≡
[
ηx, η

′
x

]
. (37)

In particular, the emittance is a dynamic equilibrium between damping τ and diffusion Dδ due to
classical radiation and quantum fluctuations from photon emission [25]

εx,y = τx,y 〈Hx,yDδ〉 , σ2
δ = τδ 〈Dδ〉 =

Cq

〈
1
ρ3

〉
γ2

0

Jδ

〈
1
ρ2

〉 ' Cuhνc

2JδE0
, Cq ≡

3Cu~
4mec0

, Cu ≡
55

24
√

3

(38)
with

Dδ '
Cu

4

〈Pγ〉hνc

NbqeE2
0

=
Cu

4

U0hνc

T0E2
0

, 〈Pγ〉 = U0Ib =
NbqeU0

T0
(39)

and
τδ =

2NbqeE0

Jδ 〈Pγ〉
=

2T0E0

JδUtot
, Jxτx = Jyτy = Jδτδ, Jx + Jy + Jδ = 4 (40)

where τ is the damping time, H the linear dispersion action, D the diffusion coefficient, J the partition
number, T0 [s] the revolution time, E0 [eV] the beam energy, U0 [eV] the radiated energy by an electron
per turn, 〈Pγ〉 [W] the total radiated power, Ib [A] the beam current, Nb [As] the beam charge, hνc [eV]
the critical photon energy, and qe [As] the electron charge. For dipoles without gradient

Jx ≈ Jy ≈ 1, Jδ ≈ 2. (41)

The factor 2 between the transverse vs. longitudinal plane is because the action, rather than the
amplitude, is being damped for the former.
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2.7 Control of the Nonlinear Dynamics: Driving Terms

For the nonlinear case, a Taylor map is extracted from the symplectic integrator by automatic differ-
entiation via a C++ implementation of ditto. Under quite general conditions, by using Lie series, it
can be factorized [26,27]

M = eL−h2eL−h3eL−h4 . . . = MeL−h3eL−h4 . . . (42)

where M is a linear map and hn (x̄) are homogenous polynomials in the pase-space coordinates of
degree n. For a lattice with a discrete set of e.g. thin sextupoles (b3L)k to leading order

h3 ≡
∑
Ī

hĪ (2Jx)
i1+i2

2 (2Jy)
i3+i4

2 δi5ei[(i1+i2)φx+(i3+i4)φy ], Ī ≡ [i1, i2, i3, i4, i5] (43)

where

hĪ ∼
N∑
k=1

(b3L)k (βx,k)
i1+i2

2 (βy,k)
i3+i4

2 ηi5x,ke
i[(i1+i2)µx,k+(i3+i4)µy,k]. (44)

The Lie series approach provides a recursive formulation which can be automated to arbitrary order [28].
For the SSC conceptual design analytic expressions were worked out up to decapoles (for realistic
representation of super-conducting magnets) [29], and for the SLS conceptual design to second order
in the sextupole strengths [15].

The map can be written in normal form by a Lie transform g
(
φ̄, J̄ ; δ

)
(a canonical transformation

obtained by perturbation theory) so that K
(
J̄ ; δ
)
only depends on the linear action [28,30]

M = e
L−H(φ̄,J̄;δ) = AeL−g(φ̄,J̄;δ)e

L−K(J̄;δ)e
L−g(φ̄,J̄;δ)A−1 (45)

where A is a linear map and
[
φ̄, J̄

]
the action-angle variables for the linear system. The tune, including

amplitude dependant tune shift and chromaticity, is then obtained from

ν̄
(
J̄ ; δ
)

=
1

2π
∂J̄K

(
J̄ ; δ
)

(46)

whereas g
(
φ̄, J̄ ; δ

)
describes the distortions of the linear optics functions.

2.8 Control of the Tune Foot Print: Tune Confinement Approach

The tune foot print is obtained from Eq. 46

ν̄ =
1

2π
∂J̄K (47)

where

K
(
J̄ ; δ
)

=k11000Jx + k00110Jy + k22000J
2
x + k00220J

2
y + k11110JxJy

+ k33000J
3
x + k00330J

3
y + kh22110J

2
xJy + k11220JxJ

2
y

+ k44000J
4
x + k00440J

4
y + k22220J

2
xJ

2
y + k33110J

3
xJy + k11330JxJ

3
y

+ k11001Jxδ + k00111Jyδ

+ k11002Jxδ
2 + k00112Jyδ

2 + k22001J
2
xδ + k00221J

2
y δ + k11111JxJyδ

+ k22002J
2
xδ

2 + k00222J
2
y δ

2 + k11112JxJyδ
2 + . . . (48)
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which gives

νx = − 1

2π
∂JxK =− 1

2π

(
k11000 + 2k22000Jx + k11110Jy + 3k33000J

2
x + 2k22110JxJy + k11220J

2
y

+ 4k44000J
3
x + 2k22220JxJ

2
y + 3k33110JxJy + k11330J

3
y

+k11001δ + k11002δ
2 + 2k22001Jxδ + k11111Jyδ + 2k22002Jxδ

2 + k11112Jyδ
2 + . . .

)
,

νy = − 1

2π
∂JyK =− 1

2π

(
k00110 + 2k00220Jy + k11110Jx + 3k00330J

2
y + k22110J

2
x + 2k11220JxJy

+ 4k00440J
3
y + 2k22220J

2
xJy + k33110J

3
x + 3k11330JxJ

2
y

+k00111δ + k00112δ
2 + 2k00221Jyδ + k11111Jxδ + 2k00222Jyδ

2 + k11112Jxδ
2 + . . .

)
.

(49)

The surface area is˚
|∆νx| |∆νy| dJxdJydδ =

˚ √
∆ν2

x∆ν2
ydJxdJydδ

=

˚
1

4π2

√
(∂JxK − h11000)2 (∂JyK − h00110

)2
dJxdJydδ

≤
˚

1

4π2

(
4h2

22000J
2
x + h2

11110J
2
y + h2

11001δ
2 + . . .

)1/2

×
(
4h2

00220J
2
y + h2

11110J
2
x + h2

00111δ
2 + . . .

)1/2
dJxdJydδ. (50)

where the Cauchy-Schwarz inequality has been used for the last step.

The last expression, also known a s L2-norm to mathematicians, has been the guiding principle for a
robust design of SLS [15,31]. Analytic expressions for the resonance driving and tune foot print terms
to second order in the sextupole strength, only requiring knowledge of the linear optics functions, were
ported to OPA [32] in order to streamline the iterative design process for control of:

linear optics ⇔ nonlinear dynamics.

The multipole strength is controlled by including higher order terms. Clearly, at some magnitude for
the multipole strengths, the higher order terms no longer taper off, which gives an upper bound for
the nonlinear corrections. Having determined this upper bound by a higher order evaluation of the
resonance driving terms and the tune foot print, one can then simplify the nonlinear optimizations,
i.e. solving, in a least-square sense an over-constrained nonlinear system of polynomial equations for
the multipole strength.

So, as a refinement, instead of minimizing the L2 norm for the power series coefficients, one may
minimize the tune footprint directly; i.e., by balancing the nonlinear terms. In other words, attempt
to improve the stability by adding nonlinearity. In particular, because the L2 norm leads to a quite
stiff nonlinear system of algebraic equations (e.g. NSLS-II [33]), unless octupols are introduced, as it
was done for MAX-IV [11]. The MAX-IV design is not only robust but also conservative [11], i.e. it
can be pushed during the facility’s life cycle [14].

As an example Tab. 4 shows the Lie generators (driving terms) for the 101 pm lattice of SLS-2 (see
below). In conclusion, the here presented solution was obtained by suppressing the resonance driving
and tune foot print terms to ∼ 1 × 10−8, evaluated at some representative transverse amplitude and
momentum aperture, and with a heuristic scale factor between the latter and former terms, since they
have different units.

One concern with regard to tune confinement is a “folding” of the tune foot print, see ref. [34]. In par-
ticular, the KAM stability theorem for Hamiltonian systems [35–37] requires that it is non-degenerate

det {∂J̄ ν̄} = det
{
∂J̄ J̄H

(
J̄
)}
6= 0. (51)
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Hence, it is desirable to keep such points outside the physical aperture. On the other hand, from a
phenomenological point of view, it is clear that resonance driving terms are required for such points to
be problematic. Furthermore, for electrons there is radiation damping, i.e. it is not a pure Hamiltonian
system.

2.9 Longitudinal Dynamics

For 2.5 degrees-of-freedom (δ treated as a parameter not as a dynamic variable), introducing phase-
space coordinates relative to the momentum dependent fixed point from Eq. 24,

x̄→ x̄+ η̄(1)δ + . . . (52)

into the Hamiltonian from Eq. 23 gives

H (x̄; s) =
p2
x + η

(1)′2
x δ2

2 (1 + δ)
− b1

(
x+ η(1)

x δ
)
δ +

b21 + b2
2

(
x2 + 2xη(1)

x δ + η(1)2
x δ2

)
+
b3
3

(
x3 + 3x2η(1)

x δ + 3xη(1)2
x δ2 + η(1)3

x δ3
)

+
b4
4

(
x4 + 4x3η(1)

x δ + 6x2η(1)2
x δ2 + 4x3η(1)3

x δ3 + η(1)4
x δ4

)
+ . . .

The time of flight is obtained from

c0t
′ = ∂δH =η(1)′2

x δ − b1
(
x+ 2η(1)

x δ
)

+
(
b21 + b2

) (
x+ η(1)

x δ
)
η(1)
x

+ b3

(
x2η(1)

x + 2xη(1)2
x δ + η(1)3

x δ2
)

+ b4

(
x3η(1)

x + 3x2η(1)2
x δ + 3x3η(1)3

x δ2 + η(1)4
x δ3

)
+ . . .

The time of flight depends on the transverse betatron amplitude as well.

By introducing action-angle variables from Eq. 29, the Hamiltonian for the transverse dynamics sim-
plifies to [19]

K
(
φ̄, J̄

)
= 2π (νxJx + νxJx) +

(
ξ(1)
x Jx + ξ(1)

y Jy

)
δ + . . . (53)

with Hamilton’s equations

J ′x = ∂−φxK = 0, φ′x = ∂JxK = 2πνx + ξ(1)
x δ,

J ′y = ∂−φyK = 0, φ′y = ∂JyK = 2πνy + ξ(1)
y δ,

c0t
′ = ∂δK = ξ(1)

x Jx + ξ(1)
y Jy.

i.e., the path dependence with transverse amplitude originates from the (linear) chromaticity, because
the flow is symplectic.

The Hamiltonian for the longitudinal dynamics is [51]

H (φδ, δ) =
hη(1)δ2

2
+
hη(2)δ3

3
+

eVrf

2πE0
[cos (φδ + φ0) + φδ sin (φ0)] (54)

where E0 is the beam energy, Vrf the RF cavity voltage, h the harmonic number, φ0 the synchronous
phase, e the electron charge, and η the phase slip factor

η ≡ E0

T0

dT0

dE
= η(1) + η(2)dE

E
+ . . . (55)
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where T0 is the revolution time. To leading order the phase slip factor is

η(1) =
1

L

ˆ L

0

η
(1)
x (s)

ρ (s)
ds− 1

β2
0γ

2
0

(56)

where L is the length of the structure, and β0, γ0 are the relativistic factors.

Similarly, the momentum compaction is defined by

α ≡ p0

L

dL

dp
= α(1) + α(2)δ + . . . (57)

and to leading order

α(1) =
1

L

ˆ L

0

η
(1)
x (s)

ρ (s)
ds, α(2) =

1

L

ˆ L

0

(
2η

(2)
x (s)

ρ (s)
+ η(1)′2

x (s)

)
ds. (58)

They are related by

η(1) = α(1) − 1

β2
0γ

2
0

. (59)

Collecting the results, to leading order the Hamiltonian is

H
(
J̄ , φ̄, φδ, δ

)
=
hη(1)δ2

2
+
hη(2)δ3

3
+
eVrf

2πE0
[cos (φδ + φ0) + φδ sin (φ0)]+

(
ξ(1)
x Jx + ξ(1)

y Jy

)
δ+. . . (60)

2.10 Touschek Life Time

The beam half life time due to Touschek scattering is given by [38–40]

1

T
=
r2

ecoNe

8πγ3σs

1

C

˛ F

[(
δacc(s)
γσx′ (s)

)2
]

σx (s)σy (s)σx′ (s) δ2
acc (s)

ds (61)

where σx′ (s) =
εx

σx (s)

√
1 +
Hx (s)σ2

δ

εx
and F (x) =

1

2

1ˆ

0

[
2

u
− ln

(
1

u

)
− 2

]
e−

x/u du, (62)

with co [m/s] speed of light, ro [m] classical electron radius, Ne electrons in bunch, C [m] ring circumfer-
ence, σs [m] rms. bunch length, σx/y [m] rms beam envelopes and δacc the local momentum acceptance,
i.e. the maximum momentum change for a particle from the bunch core where it is not lost. Eq. 61
applies to flat lattices only, where dispersion and emittance in the horizontal are much larger than
in the vertical. Momentum acceptance is different for positive and negative momentum due to the
asymmetry of the bucket, so the total loss rate is the average, i.e. 1/T = 1/2 (1/T(δ > 0) + 1/T(δ < 0)).
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3 The Baseline Lattice

In the following we characterize the 101 pm lattice introduced in sec. 1.5 with regard to nonlinear
performance and robustness to imperfections.

3.1 Linear Optics

As mentioned in sec. 1.5 already, linear optics design was guided by the requirement for cancellation
of first and second order sextupole modes by phase advance over seven cells. This is achieved by a cell
tune of [3/7, 1/7], which also provides a low emittance of 101 pm. Beta functions and dispersion for one
super-period, i.e. one 7BA arc were shown in Fig. 1. The normalized phase advance is shown in Fig. 2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  5  10  15  20  25

ν

s [m]

Normalized Phase Advance

νx
νy

Figure 2: Normalized Phase Advance for a Super Period ∆ν = [3.27, 1.27].

3.2 Nonlinear Optics: the Bare Lattice

Widely following the design strategy from Sec. 1.3, the nonlinear optimization was performed interac-
tively using the OPA code: in a first step, the sextupoles were set for minimization of the five geometric
1st-order sextupole modes, in a second step the chromatic 1st-order and the 2nd-order modes were in-
cluded and a steepest gradient minimizer (Powell) was used. Including ADTS and 2nd and 3rd-order
chromaticities results in some distortion of the regular pattern from the first step. In particular, the
chromatic sextupoles in the dispersion suppressor became rather strong, and harmonic sextupoles in
the matching cells were pushed to “wrong” polarities. In a third step, ADTS and 2nd-order chromatic-
ities and a few resonance modes were selected for linear minimization (SVD) using the octupoles. In
particular h20020 was selected on purpose, since the systematic resonance 2νx − 2νy = 4 · 12 is near
to the working point, and h31000 was selected empirically to obtain a less distorted Poincaré plot in
horizontal phase space. The octupoles are considered as “trims”, i.e. the range of variation is limited,
nevertheless, they are able to efficiently suppress single resonant modes and to taylor the ADTS. Of
course, this process is iterative and requires empirical adjustment of weighting factors for the various
terms.
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Lie Gen-
erator Effect Normalized

Value
|k11001| ξ

(1)
x ∼ ∂δνx ∼ 0

|k00111| ξ
(1)
y ∼ ∂δνy ∼ 0

|h10002| ∂δδxcod ∼ 0

|h20001| ∂δβx 1.6× 10−7

|h00201| ∂δβy 1.5× 10−8

|h21000| νx 5.4× 10−8

|h10110| νx 1.0× 10−8

|h30000| 3νx 8.5× 10−8

|h10020| νx − 2νy 1.5× 10−7

|h10200| νx + 2νy 4.9× 10−8

|h20110| 2νx 4.8× 10−8

|h31000| 2νx 3.3× 10−9

|h40000| 4νx 5.3× 10−8

|h20020| 2νx − 2νy 2.8× 10−9

|h20200| 2νx + 2νy 2.3× 10−7

|h00400| 4νy 1.0× 10−8

|h11200| 2νy 3.3× 10−8

|h00310| 2νy 3.9× 10−8

Lie Gen-
erator Effect Normalized

Value
|k22000| ∂Jxνx 3.6× 10−7

|k11110| ∂Jyνx, ∂Jxνy 5.9× 10−8

|k00220| ∂Jyνy 8.1× 10−8

|k22001| ∂Jxδνx 3.3× 10−7

|k11111| ∂Jyδνx, ∂Jxδνy 7.8× 10−7

|k00221| ∂Jyδνy 5.9× 10−8

|k11002| ξ
(2)
x ∼ ∂δδνx 4.0× 10−7

|k00112| ξ
(2)
y ∼ ∂δδνy 1.3× 10−7

|k11003| ξ
(3)
x ∼ ∂δδδνx 5.7× 10−8

|k00113| ξ
(3)
y ∼ ∂δδδνy 2.7× 10−8

|k33000| ∂JxJxνx 5.1× 10−8

|k22110| ∂JxJyνx, ∂JxJxνy 9.3× 10−8

|k11220| ∂JyJyνx, ∂JxJyνy 2.0× 10−7

|k00330| ∂JyJyνy 4.5× 10−8

Table 4: Normalized Magnitude of the Lie Generators.

The lattice then was analyzed to arbitrary order based on TPSA calculations. Table 4 displays the
normalized magnitude of the Lie generators.

The following figures visualize the nonlinear performance for the bare (i.e. error-free) lattice:

Fig. 3 shows the bucket at a voltage of 1.4 MV of the 500 MHz RF-system. Due to a relatively large
second order momentum factor of α2 = 1.05 · 10−3 (about 8 times larger than α1) the bucket is quite
asymmetric along the energy axis, i.e. a particle starting at moderate negative momentum reaches
rather large positive momentum values. At higher voltage the bucket becomes a so-called alpha bucket
where the two buckets contain elliptic and hyperbolic fix point pairs at same phase, whereas for lower
voltage they contain the fix point pairs at same energy. Transition occurs at 1.99 MV.

Fig. 4 shows the dynamic aperture on-momentum and for ±5% momentum deviation. Tracking was
done in 6-D including synchrotron oscillations for 1.8 MV cavity voltage. The dynamic aperture for
particles starting at −5% is relatively small, because these particles reach quite large positive momenta
due to the bucket asymmetry.

Fig. 5: upper plots shows the tunes as function of initial betatron amplitudes at the middle of straight,
as it is relevant for injection. Tracking results and the predictions from perturbation theory (up to 8th

order in phase space coordinates) are displayed, indicating that the higher order contributions are still
moderate near the aperture limit. The lower plot shows the chromaticities: the linear part has been
corrected to zero, and the residual higher orders determine the tune footprint.

Fig. 6: the upper plot shows the the on-momentum tune footprint in the tune diagram. The tune has
been placed to avoid overlap with non-systematic low order sextupole resonances which get activated in
the real lattice where engineering tolerances perturb the periodicity. Note that the systematic 4th-order
resonance 2νx − 2νy = 4 · 12 is ‘hiding” behind the main coupling resonance, but its driver h20020 was
deliberately suppressed with the octupoles (see corresponding entry in Table 4. The lower plot shows
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Figure 3: Longitudinal Dynamics: top plot shows the bucket for 1.4 MV voltage at 500 MHz RF. The
small plots show the bucket for 1.99 MV and 2.4 MV voltage. Elliptic and hyperbolic fix points are
marked by blue diamonds and red crosses. Separatrices are shown as thick lines.

the frequency map in real space indicating that there are no strong resonances.

Fig. 7: upper plot shows the off-momentum tune footprint in the tune diagram and the lower plot
shows the frequency map in momentum and horizontal real space. Calculations were done for fixed
momentum otherwise chromatic tune variation due to synchrotron oscillations would cover up any tune
shift due to diffusion.

Fig. 8 shows the momentum acceptance obtained from Touschek tracking, i.e. starting particles at
the bunch core with an energy offset and binary search for maximum offset where particles are not
lost. Following parameters were assumed: Emittances εx = 101 pm·rad (IBS neglected), εy = 10
pm·rad, bunch charge Qb = 0.994 nC, i.e. beam current Ib = 400 mA in 390 of hRF = 484 buckets,
circumference C = 290.4 m, bunch length σs = 2.58 mm, energy spread σδ = 0.103%. The resulting life
time is τ =4.6 hrs, which would give about 4 hrs taking into account residual gas scattering. Including
IBS and a harmonic cavity to stretch the bunches by a factor 2–3, a total lifetime of more than 10 hrs
may be expected which fulfills the requirements.
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Figure 4: On and Off-Momentum Dynamic Aperture for Bare Lattice (2,064 turns; with RF cavity).

 39.08

 39.1

 39.12

 39.14

 39.16

 39.18

 39.2

 39.22

 39.24

 39.26

-6 -4 -2  0  2  4  6

ν x

Ax,y [mm]

νx vs. Ax,y

Ax
Ay
Ax (pert)
Ay (pert)

 15.2

 15.25

 15.3

 15.35

 15.4

 15.45

 15.5

-6 -4 -2  0  2  4  6

ν y

Ax,y [mm]

νy vs. Ax,y

Ax
Ay
Ax (pert)
Ay (pert)

 39.18

 39.2

 39.22

 39.24

 39.26

 39.28

 39.3

 39.32

 39.34

-6 -4 -2  0  2  4  6
 15.3

 15.31

 15.32

 15.33

 15.34

 15.35

 15.36

 15.37

 15.38

ν x ν y

δ [%]

Chromaticity

νx
νy
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Figure 6: On-Momentum Frequency Map for Bare Lattice (4,128 turns).
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Figure 7: Off-Momentum Frequency Map for Bare Lattice (4,128 turns).
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Figure 8: Touschek Tracking Bare Lattice.

3.3 Real Lattice

Engineering tolerances according to Sec. B were applied to all elements. So far no correlations between
elements have been considered, which might improve the results.

144 BPMs and horizontal/vertical correctors were used for orbit correction. The correctors were
assumed to be realized as additional coils in sextupoles, as it was done at SLS. Fig. 9 shows the
residual rms orbit after correction proving the robustness of orbit correction: The orbit is corrected
to zero at the BPMs. The excursion between is plotted as a bar at each element. The bar is centered
at the average orbit, which is non-zero due to the limited number of seeds, and the size of the bar is
given by the rms orbit from all seeds. Since the orbit is well corrected, the rms value is comparable to
the mean value.
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Figure 9: Robust Control of Orbit.: horizontal (top) and vertical (bottom) orbit after correction.
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√
〈x2〉.
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Fig. 10 shows the degradation of the bare lattice on-momentum dynamic aperture due to engineering
tolerances for various seeds. Still, a horizontal aperture of more than ±5% is left thus supporting
confidence in feasibility of off-axis injection.

Fig. 11 shows the horizontal and vertical dynamic aperture as a function of momentum with and
without engineering tolerances. This is in particular important for Touschek lifetime since particles
from the bunch core which gain or loose energy due to inelastic scattering start horizontal betatron
oscillations around the corresponding off-momentum orbits.

Fig. 12 show the tune footprint as function of initial betatron amplitudes and the frequency map in
real space with engineering tolerances and should be compared to 6: the web of resonance lines is much
more dense due to activation of non-systematic resonances, however the deterioration is moderate.

Fig. 13 shows the tune footprint as function of momentum and the frequency map in momentum and
horizontal coordinate as should be compared to 7. Now trapping by higher order resonances becomes
visible, but, again, the deterioration is moderate.

Fig. 14 shows the momentum acceptance obtained from Touschek tracking for one particular error seed
and for the complete lattice. There is virtually no degradation compared to Fig. 8 for one achromat
of the bare lattice: due to the relatively low RF voltage of 1.4 MV, the lattice momentum acceptance
is smaller than the RF momentum acceptance and thus degradation due to engineering tolerances has
little impact.
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Figure 12: On-Momentum Frequency Map for Real Lattice (4,128 turns).
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Figure 13: Off-Momentum Frequency Map for Real Lattice (4,128 turns).
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4 Conclusions and Outlook

A robust design strategy has been established and applied to SLS-2. For a low emittance ring with
strong non-linearities suppression of the Hamiltonian modes of first order in sextupole strength and
of second order in sextupole, resp. first order in octupole strength via phase cancellations is essential
and affects the linear lattice design strongly. Perturbative violation of the cancellation scheme in order
to manipulate single phase independent or resonant terms leads to a further improvement of dynamic
acceptances.

The present so called CDR-reference lattice revealed a weak point since one second order mode was
amplified coherently: dynamic apertures, although large for the bare lattice, deteriorated much when
engineering tolerances were applied. A robust solution was found for a complete cancellation based on
a lattice cell with even stronger focusing, which, as a pleasant side-effect, significantly further reduced
the emittance. However, the lattice study presented here is not yet feasible with regard to space
constraints but gives a high level of confidence that a design is within reach.

Combining the non-linear optics optimization strategy with technical constraints will be the next step
in order to arrive at a feasible, robust lattice, which then will become the new reference. From the
engineering point of view, the modifications will appear small and the parameters of the component
will change only in a few percent range, thus no engineering design work based on the present reference
is wasted.

Further studies will investigate and design an optics for non-zero chromaticity, as may be required
for suppression of coupled bunch instabilities, implement correlated misalignment errors modelling the
girder/magnet hierarchy, design off-axis and on-axis injections schemes, and explore the option for a
round beam based on a “Moebius” lattice as outlined in appendix C.
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A Reference Lattice Benchmarks

For a comparison, the benchmarks used for the here presented robust approach and solution have
also been applied to the 139 pm emittance lattice, which still is the reference for the conceptual design
report, but will be abandoned as soon as a version of the new 101 pm lattice will have been established,
which is feasible with regard to inter-magnet distances etc.

Figures 15–22 corresponding to Figs. 4–13 of the new baseline lattice.

For the reference lattice, the dynamic aperture according to Fig. 15 looks reasonable, but Figs. 16 (top),
17 (top) and 18 (top) reveal that the rather larger ADTS leads to a crossing of the systematic 5th-order
resonance 3νx+2νy = 11·12, causing an increase of vertical oscillation amplitude and potential particle
loss at narrow gaps.

This resonance is driven by cross terms from the earlier mentioned 2νx + 2νy and νx, the latter a
leading order sextupolar resonance. Besides, an evaluation of the driving terms to 5th order (in the
phase-space coordinates) reveals that there are quite a few rather strong cross terms.

Furthermore, the resonance crossing occurs at x ≈ ±3 mm, just where the vertical ADTS exhibits
a “folding” and is most vulnerable. This leads to the collapse of the on and off-momentum dynamic
aperture when engineering tolerances are included.
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Figure 17: On-Momentum Frequency Map for Bare Lattice (4,128 turns).
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Figure 21: On-Momentum Frequency Map for Real Lattice (4,128 turns).
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Figure 22: Off-Momentum Frequency Map for Real Lattice (4,128 turns).
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B Engineering Tolerances

The mechanical mis-alignment and magnetic multipole tolerances are summarized in in Tabs. 5-6. For
the guidelines and what was achieved for SLS see ref. [42–45].

\bar{\nu}

Type [∆x,4y] rms
(µm)

Roll rms
(mrad)

(Girder) (25) (0.2)
Dipole 20 0.2

Quadrupole 20 0.2
Sextupole 20 0.2
Octupole 25 0.2
BPM 5 0.01

Table 5: Mechanical Alignment Tolerances.

Quadrupoles
(Rref = 10 mm)

Random
(10-4)

n [∆Bn,∆An]

2 5.0, 0.0
3 1.1, 1.1
4 0.3, 0.2
6 0.03, 0.0

Quadrupoles
(Rref = 10 mm)

Systematic
(10-4)

n [∆Bn,∆An]

6 2.0, 0.0
10 2.0, 0.0
14 2.0, 0.0

Table 6: Tolerances for Random and Systematic Multipoles in the Quadrupoles.

Sextupoles
(Rref = 10 mm)

Random
(10-4)

n [∆Bn,∆An]

3 5.0, 0.0
4 2.0, 2.0
5 0.6, 0.0

Sextupoles
(Rref = 10 mm)

Systematic
(10-4)

n [∆Bn,∆An]

9 3.0, 0.0
15 3.0, 0.0
21 3.0, 0.0

Table 7: Tolerances for Random and Systematic Multipoles in the Sextupoles.

Octupoles
(Rref = 10 mm)

Random
(10-4)

n [∆Bn,∆An]

4 5.0, 0.0

Table 8: Tolerances for Random Multipoles in the Octupoles.
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C Round Beam: The Möbius Ring

One way to implement a round beam is by implementing a Möbius ring [46, 47]. However, since this
implies introducing a strong linear coupling between the horizontal and vertical planes, the related lin-
ear coupling resonances νx±νy are likely to degrade the performance of a state-of-the-arts synchrotron
light source lattice. So, for a robust approach, to e.g. mitigate the effect of Intrabeam scattering (IBS),
one may instead generate a dispersion wave [48,49].

For the former approach, a Möbius ring is obtained by inserting a twist section

MTwist =

[
0 ±I
I 0

]
(63)

to a lattice with mid-plane symmetry and the linear map

Mx,y =

[
cos (µx,y) + αx,y sin (µx,y) βx,y sin (µx,y)

−γx,y sin (µx,y) cos (µx,y)− αx,y sin (µx,y)

]
, (64)

one obtains

M =

[
0 ±My

Mx 0

]
. (65)

Averaging over two turns around the lattice with the twist section one obtains

ε̃x = ε̃y = τ (〈HxDδ〉+ 〈HyDδ〉) =
Jδτδ

Jx + Jy
(〈HxDδ〉+ 〈HyDδ〉) =

Jxεx + Jyεy
Jx + Jy

(66)

since
1

τ
=

1

τx
+

1

τy
=
Jx + Jy
Jδτδ

. (67)

Hence, for an initial lattice with mid-plane symmetry

ε̃x = ε̃y =
εx

1 +
Jy
Jx

. (68)
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