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Abstract

We have designed an “ultimate” storage ring for the PEP-X light
source that achieves the diffraction limited emittances (at 1.5 Å)
of 12 pm-rad in both horizontal and vertical planes with a 4.5-
GeV beam. These emittances include the contribution of intra-
beam scattering at a nominal current of 200 mA in 3300 bunches.
This quality beam in conjunction with a conventional 4-m undula-
tor in a straight section can generate synchrotron radiation having
a spectral brightness above 1022 [photons/s/mm2/mrad2/0.1%
BW] at a 10 keV photon energy. The high coherence at the
diffraction limit makes PEP-X competitive with 4th generation
light sources based on an energy recovery linac. In addition, the
beam lifetime is several hours and the dynamic aperture is large
enough to allow off-axis injection. The alignment and stability
tolerances, though challenging, are achievable. A ring with all
these properties is only possible because of several major advances
in mitigating the effects of nonlinear resonances.
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1 Introduction

An ultimate storage ring (USR) [1], defined as an electron ring-based light
source having an emittance in both transverse planes at the diffraction limit
for the range of X-ray wavelengths of interest for a scientific community,
would provide very high brightness photons having high transverse coherence
that would extend the capabilities of X-ray imaging and probe techniques
beyond today’s performance. It would be a cost-effective, high-coherence 4th
generation light source [2], competitive with one based on energy recovery
linac (ERL) technology [3], serving a large number of users studying material,
chemical, and biological sciences. Furthermore, because of the experience
accumulated over many decades of ring operation, it would have the great
advantage of stability and reliability. Given that there are three predominant
spectral ranges of interest for the photon science community roughly specified
as ≥ 6Å (with electron energy ≈ 2 GeV), 6-0.5Å (with electron energy 3 to 5
GeV), and ≤ 0.5Å (with electron energy ≥ 6 GeV), USRs having diffraction-
limited emittances (defined as λ/4π for wavelength λ) on the scale of 100
pm-rad, 10 pm-rad and 1 pm-rad can be considered.

Figure 1: Layout of PEP-X at SLAC as an ultimate storage ring.

In this paper we consider the design of a mid-energy USR having 10-pm-
rad emittance. It is a tremendous challenge to design a storage ring having
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such an extremely low emittance, a factor of 100 smaller than those in existing
mid-energy light sources, especially such that it has adequate dynamic aper-
ture and beam lifetime. In many ultra-low emittance designs [4, 5, 6, 7, 8], the
injection acceptances are not large enough for accumulation of the electron
beam, necessitating on-axis injection where stored electron bunches are com-
pletely replaced with newly injected ones. Recently, starting with the MAX-
IV 7-bend achromatic cell [9], we have made significant progress [10, 11] with
the design of PEP-X, a USR that would inhabit the decommissioned PEP-II
tunnel at SLAC (Fig. 1). The enlargement of the dynamic aperture is largely
a result of the cancellations [12] of the 4th-order resonances in the 3rd-order
achromats [13] and the effective use of lattice optimization programs [14, 15].

In this paper, we will show those cancellations of the 4th-order resonances
using an analytical approach based on the exponential Lie operators and the
Poisson brackets. Wherever possible, our analytical results will be compared
with their numerical counterparts [12]. Using the derived formulae, we will
construct 4th-order geometric achromats and use them as modules for the
lattice of the PEP-X USR, noting that only geometric terms are canceled to
the 4th order.

We begin with a review of spontaneous synchrotron radiation emitted
from an undulator in an electron storage ring in section 2 and evaluate the
performances of PEP-X as a diffraction-limited light source based on the
lattice and beam parameters. We will outline our lattice design in section
3 where both linear optics and nonlinear analysis will be considered and
presented in an integrated and coherent fashion. In section 4, we will present
the performance of the design lattice along with the analysis of the machine
tolerances and single-particle dynamics.

Continuing into section 5, we will consider the scattering effects within
the electron bunch. Finally, we will briefly estimate several important col-
lective instabilities in section 6 and will discuss aspects of our design in the
conclusion.

2 Spontaneous Synchrotron Radiation

The wavelength of synchrotron radiation at the nth harmonic from an electron
beam in a planar undulator having a period of λu and a peak magnetic field
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B0 is given by

λn =
λu

2nγ2
(1 +K2/2), (n = 1, 3, 5, ...) (2.1)

where γ is the Lorentz relativistic factor and K = eB0λu/2πmc is the un-
dulator strength parameter. The bandwidth of the spectral line at the nth

harmonic is inversely proportional to the product of the number of undulator
periods Nu and the harmonic number n,

∆ω

ωn
≈ 1

nNu

. (2.2)

Table 1: Main parameters of PEP-X as an ultimate storage ring. The effects
of the intra-beam scattering and 90 m of damping wigglers are included.

Parameter Description Value
E [GeV] beam energy 4.5
I [mA] beam current 200
ϵx,y [pm-rad] x,y emittances 11.5, 11.5
σδ energy spread 1.25× 10−3

βx,y [m] x,y beta functions at ID 4.92, 0.8
λu [cm] period of undulator 2.3
Lu [m] length of undulator 4.4
K undulator strength 2.26

The angle-integrated photon spectral flux in the forward direction is pro-
portional to the electron beam current I and can be written as [16]

Fn =
π

2
αNu

∆ω

ω

I

e
Qn(

nK2

4 + 2K2
). (2.3)

Here α is the fine structure constant and the function Qn(Y ) is defined
by

Qn(Y ) = 4Y [J(n+1)/2(Y )− J(n−1)/2(Y )]2, (2.4)

where Jm are the Bessel functions. To achieve a higher flux, one of the
important performance parameters for a light source, one needs a higher
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Figure 2: Function Qn(
nK2

4+2K2 ).

current, a longer undulator, and a reasonable value of the undulator strength
K, as illustrated in Fig. 2. As an example, we calculate the photon spectral
flux using the PEP-X parameters in Table 1 and show the results in Fig. 3.

Another important aspect of a light source is its spectral brightness Bn,
defined as the ratio of the photon spectral flux to the volume of the convo-
luted phase of the electron beam and the photon beam in the two transverse
dimensions, namely [16],

Bn =
Fn

4π2ΣxΣ′
xΣyΣ′

y

, (2.5)

where the convoluted sizes and divergences are

Σx,y =
√
σ2
x,y + σ2

λ, (2.6)

Σ′
x,y =

√
σ′2
x,y + σ′2

λ. (2.7)

Here σx,y, σ
′
x,y are the RMS sizes and divergences of the electron beam re-

spectively. Given the undulator length Lu = Nuλu, the size and divergence
of the photon beam are given by

σλ =

√
λnLu
8π2

, (2.8)
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Figure 3: Photon spectral flux in a 0.1% bandwidth calculated using SPEC-
TRA [17] within the forward cone of 3σ′

λ1
and the formula (Eq. (2.3)).

σ′
λ =

√
λn
2Lu

. (2.9)

It is worth noting that the “emittance” of the photon beam

ϵλ = σλσ
′
λ = λn/4π, (2.10)

depends only on its wavelength. Accordingly, its “beta” function is given by

βλ =
σλ
σ′
λ

=
Lu
2π
. (2.11)

One can easily show that the convoluted phase space area, 2πΣx,yΣ
′
x,y, is at

a minimum if the beta functions of the electron beam are matched to those
of the photon beam, namely, βx,y = βλ. The matching conditions not only
maximize the brightness but also simplify its formula to be

B(m)
n =

Fn

4π2(ϵx + λn/4π)(ϵy + λn/4π)
, (2.12)

where ϵx,y are the emittances of the electron beam in the horizontal and
vertical planes respectively. Reducing electron emittance increases brightness
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towards an ultimate upper limit for spontaneous radiation from an undulator:

B(u)
n =

4Fn

λ2n
. (2.13)

While beam brightness can be increased by reducing electron emittance
in the denominator of Eq. (2.12), this emittance reduction may also lead to
a reduction in the achievable flux in the numerator due to collective insta-
bilities in the electron beam. The maximum brightness for angstrom-level
spontaneous radiation, the wavelengths of interest for studying the molecular
structure and properties of materials, from a particular insertion device in a
storage ring is thus due to the trade-off between low emittance and achievable
beam current.
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Figure 4: Spectral brightness of PEP-X at 200 mA, calculated using SPEC-
TRA and the formula (Eq. (2.5)) multiplying by the reduction factor
(Eq. (2.16)).

So far, we have ignored the emittance of the electron beam in the longitu-
dinal dimension. Actually, the energy spread of the beam adds to the width
of the undulator’s spectral lines, thereby reducing spectral brightness. As-
suming the electron beam has a Gaussian distribution in the relative energy
δ (= dE/E) given by

ρ(δ) =
1√
2πσδ

e
− δ2

2σ2
δ (2.14)
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then the frequency dependence at the nth harmonic is also a narrow Gaussian
with a sigma of σωn = ωn/

√
2nNu, which is consistent with Eq. (2.2). The

reduction factor fδ can then be estimated by

fδ =
1√
2πσδ

∫ ∞

−∞
e
−∆ωn

2

2σ2
ωn e

− δ2

2σ2
δ dδ, (2.15)

where ∆ωn = 2ωnδ, which can be derived from Eq. (2.1). Carrying out the
integral, we obtain

fδ =
1√

1 + 8(σδnNu)2
. (2.16)

For a large harmonic number n or a large number of undulator periods Nu,
the reduction becomes significant. In a typical electron storage ring having
relative energy spread σδ = 0.001, the degradation of brightness at higher
harmonics constrains the useful number Nu of bandwidth-reducing undulator
periods to no more than a couple of hundred. Moreover, the energy spread
indirectly limits the photon flux since it is proportional to Nu.
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Figure 5: Coherent fraction for the PEP-X ultimate storage ring.

To give an example of a synchrotron light source reaching the diffraction
limit at 1-Å wavelength, we use the PEP-X parameters tabulated in Table 1
and calculate the spectral brightness as shown in Fig. 4. In the figure, one
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can see a comparison of the results generated by SPECTRA and the ana-
lytical formulas outlined in this section. At the peaks of the odd harmonics,
the agreement between the numerical code and the analytical approach is
excellent.

Finally, as the emittances approach the diffraction limit, namely ϵx,y ≈
λn/4π, the synchrotron light has more coherence in the transverse dimen-
sions. One can define the fraction of coherence,

fcoh =
Bn
B(u)
n

=
λ2n

16π2ΣxΣ′
xΣyΣ′

y

, (2.17)

to quantify the degree of coherence. Using the parameters in Table 1, we
calculate the coherent fraction and plot it in Fig 5. One can see that the
PEP-X design provides extremely high coherence multi-keV X-rays.

It is clear from the figures of photon flux, spectral brightness, and coher-
ent fraction that PEP-X would be a future light source superior to existing
facilities such as PETRA-III [18] or projects under construction [9, 19]. It
would also be competitive with the other future light sources [2] based on an
ERL.

3 Lattice Design

To reach the diffraction limit of an angstrom, the lattice of the PEP-X ul-
timate storage ring must yield a very low electron emittance on the order
of 10 pm-rad at 4.5 GeV beam energy, while providing dispersion-free optics
for insertion devices (IDs) and sufficient dynamic aperture for injection and
beam lifetime. The cancellation of dispersion minimizes the electron beam
size within the ID, thus leading to enhanced brightness of the photon beam.
An additional constraint is that PEP-X must fit into the existing 2.2-km
PEP-II tunnel and therefore must adopt the PEP-II ring layout with six 243
m long arcs and six 123 m long straight sections as shown in Fig. 1. The
PEP-X arcs have identical lattices comprised of periodic cells, and the long
straights are made of nearly periodic FODO cells, except in the injection
straight. The latter has special optics with large βx = 200 m at the injection
septum for maximum acceptance of the injected beam. Although, in general,
the injection optics breaks the 6-fold ring periodicity, the effective periodicity
was restored by making the injection straight linear matrix the same as in the
other straights. This required that the fractional part of the phase advance
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in all straights is the same. This helps to suppress some of the ring system-
atic resonances and increase the dynamic aperture to the level of an ideal
6-fold ring aperture. The complete list of PEP-X lattice parameters with
the wiggler is shown in Table 2. Lattice of the FODO and injection straight
sections have not significantly changed since the PEP-X baseline design, and
its description can be found in this report [20].

Table 2: PEP-X lattice parameters with damping wigglers at zero beam
current.

Parameter Value
Energy, E [GeV] 4.5
Circumference, C [m] 2199.32
Tune, νx, νy, νs 113.23, 65.14, 0.0069
Emittance, ϵ0w [pm·rad] 11.0
Bunch length, σz [mm] 3.0
Energy spread, σδ 1.20× 10−3

Momentum compaction 4.96× 10−5

Damping partition number, Ix, Iy, Is 1.175, 1.00, 1.825
Damping time, τx, τy, τs [ms] 19, 22, 12
Natural chromaticity, ξx0, ξy0 -162.3, -130.1
Energy loss per turn, U0 [MeV] 2.95
RF voltage, VRF [MV] 8.3
RF frequency, fRF [MHz] 476
Harmonic number 3492
Wiggler length, Lw [m] 89.66
Wiggler period, λw [cm] 5.0
Wiggler peak field, Bw [T] 1.5
Length of ID straight, LID [m] 5.0
Beta at ID center, βx, βy [m] 4.92, 0.80

3.1 Arc Optics

As a result of the balance between quantum excitation and radiation damp-
ing, an electron beam in storage rings reaches an equilibrium distribution
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with horizontal emittance given by [21],

ϵx = Cq
γ2

Ix

I5
I2

(3.1)

with

Cq =
55

32
√
3

h̄

mc
, I2 =

∮ ds

ρ2
, I5 =

∮ Hx

ρ3
ds, (3.2)

where
Hx = βxη

′
x
2
+ 2αxηxη

′
x + γxη

2
x, (3.3)

Ix is the horizontal damping partition number, ρ the bending radius, ηx, η
′
x

are the horizontal dispersion and its slope, and βx, αx, γx the horizontal
Courant-Snyder parameters.

For a simple ring with identical arc cells and without damping wiggler,
the above dependence can be simplified to

ϵ0 = Cqγ
2θ3

F

Ix
, (3.4)

where the parameter F = I5/(I2θ
3) depends on lattice functions in the cell

dipoles, and θ is a bending angle per dipole. For a minimal emittance, it
is therefore desired to have a large number of short cells with small θ and
cell lattice with low F value. Note that due to the strong dependence on θ,
the rings with longer arcs have a significant advantage. For comparison, the
total length of PEP-X arcs is about 2/3 of the ring circumference, namely
1460 m.

Optics of the theoretical minimum emittance [22] (TME) cell can yield
the lowest possible emittance corresponding to the minimum value of F :

F
(TME)
min =

1

12
√
15
. (3.5)

This, however, requires a very strong focusing which may limit dynamic
aperture, hence in practical designs the TME lattice is usually set to a higher
F value. Unfortunately, the TME cells are not suitable for insertion devices
due to lack of dispersion-free straights. On the other hand, double bend
achromat [23] (DBA) cells, widely used in light source rings, provide the ID
dispersion-free straights, but their minimal natural emittance is a factor of
3 higher relative to a TME cell with the same bending angle. A compromise
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solution to obtain both the low emittance and dispersion-free straight is
a hybrid cell – the so-called multi-bend achromat (MBA) – comprised of
several short TME type units at the cell center and a dispersion matching
unit (similar to half DBA) at each cell end.

The compact cell design requires both optical and engineering solutions.
An example is the MAX-IV 7-bend achromat cell [9], where the standard
TME defocusing quadrupoles are eliminated and replaced by a defocusing
gradient in the dipoles, and the sextupole magnets are integrated with dipoles
or quadrupoles in compact blocks. A defocusing gradient in the dipole has
the added advantage of higher Ix for even lower emittance.

Figure 6: Lattice functions in PEP-X MBA cell with 7 dipoles Four
quadrupoles on each side of the ID straight can be used for variation of ID
beta functions.

The PEP-X MBA cell with 7 dipoles, shown in Fig. 6, is similar to the
MAX-IV cell with a few modifications. It has a natural emittance of ϵ0 = 29.0
pm-rad at 4.5 GeV and zero current. The factor F/Ix in this lattice is about
5.7 times higher than in an equivalent minimum emittance TME cell due
to the choice of a relatively low phase advance required for large dynamic
aperture. The chosen cell phase advance is µx = 4π+π/4 and µy = 2π+π/4,
and the cell length is matched to 30.4 m. This provides an optimal linear cell
optics and yields 8 cells per arc resulting in an identity linear transformation
per each arc. The reason for such a choice will be given in the next section.
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The TME units have periodic lattice functions and are made of a focusing
quadrupole and a dipole with defocusing gradient per unit. A matching
dipole at each cell end is gradient-free and 20% shorter than the TME dipole.
The ID straight length is LID = 5 m, and βx/βy = 4.9/0.8 m at the ID center.
The βy at ID is near its optimal value of Lu/2π for maximum brightness.
Compared to MAX-IV, this cell has 4 additional matching quadrupoles for
a larger tuning range of the ID β functions. In particular, the ID βy can be
varied up to a 5 m value while the cell phase advance is fixed and the ID βx
and cell emittance are not significantly changed.

An ultra-low emittance lattice such as that of PEP-X is characterized by
very small beta functions and dispersion, achieved with many quadrupoles
and resulting in a very large natural chromaticity. To correct the chro-
maticity, the chromatic sextupole magnets become extremely strong as the
dispersion gets smaller and smaller. The nonlinear effects generated by such
strong sextupoles result in a severe reduction of dynamic aperture. An effi-
cient minimization of these nonlinearities becomes essential for a successful
design of an ultimate storage ring.

The cell sextupole scheme consists of 4 families of chromatic sextupoles
and 6 harmonic sextupoles. The chromaticity-correcting sextupoles are placed
at the center of the TME focusing quadrupoles and at each end of the dipole
where dispersion is not zero. The harmonic sextupoles are placed within
the two dispersion-free quadrupole triplets adjacent to the ID straight. This
scheme provides sufficient flexibility for optimization of nonlinear chromatic-
ity and amplitude dependence of the betatron tunes from the sextupole per-
turbations.

The cell magnet parameters are within a reasonable range. At 4.5 GeV,
the dipole field is <1.5 kG, the quadrupole field is <8.6 kG at 20 mm radius,
and the sextupole field is <7.8 kG at 15 mm radius and 0.2 m sextupole
length.

3.2 Perturbation of Sextupoles

We would like to provide a general treatment of sextupole perturbation and
then apply it to the design of PEP-X. For simplicity, we start with the geo-
metric abberations. Let us consider a set of thin-lens sextupoles at position
i = 1, ..., n in a beamline. Between any two adjacent sextupoles at positions
i− 1 and i, we have a linear transfer map Mi−1,i. Based on the Lie algebra
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method [24], the transfer map M of the beamline can be written as [25]

M = M0,1e
−:V1(z⃗):M1,2e

−:V2(z⃗):...Mn−1,ne
−:Vn(z⃗):Mn,n+1, (3.6)

where z⃗ is a vector in the four-dimensional transverse phase space and the
vector potential Vi(z⃗) = Si(x

3 − 3xy2)/6. Here we have denoted Si as an
integrated strength,

Si =
Li

(Bρ)

∂2By

∂x2
, (3.7)

where Li is the length of the sextupole magnet and (Bρ) the magnetic rigidity.
By repeatedly applying a similarity transformation,

L−1e−:F(z⃗):L = e−:F(L−1z⃗):, (3.8)

where L is a linear map and F is an arbitrary function, one can show [25]

M = M0,n+1e
−:V1(M−1

1,n+1z⃗):e−:V2(M−1
2,n+1z⃗):...e−:Vn(M−1

n,n+1z⃗):, (3.9)

where Mi,n+1 = Mi,i+1...Mn,n+1 is the linear transfer map from position i
to n+1 and the superscript “−1” is used to denote its inverse map. One can
see from Eq. (3.9) that the total map M is factorized into the linear map
M0,n+1 and a nonlinear map,

e−:V1(M−1
1,n+1z⃗):e−:V2(M−1

2,n+1z⃗):...e−:Vn(M−1
n,n+1z⃗):; (3.10)

and more importantly all nonlinearities are effectively transported to the end
of the beamline.

It is well known that one can use a linear symplectic map A−1 to make a
coordinate transformation to the normalized coordinates. As a consequence,
the linear transfer map can be decomposed into Mi,n+1 = A−1

i Ri,n+1An+1,
where Ri,n+1 is a rotational map with the betatron phase advances µx,i, µy,i
as the angles. Using the normalized coordinates and repeatedly applying the
similarity transformation (Eq. (3.8)), we can rewrite the map of the beamline
as

M = A−1
0 R0,n+1e

−:V1(R−1
1,n+1A1z⃗):e−:V2(R−1

2,n+1A2z⃗):...e−:Vn(R−1
n,n+1Anz⃗):An+1.

(3.11)
Explicitly, we have

Vi(R−1
i,n+1Aiz⃗) =

Si
√
βx,i

6
(βx,ix

3
i − 3βy,ixiy

2
i ), (3.12)
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where βx,i, βy,i are the optical beta functions at position i, xi = x cosµx,i −
px sinµx,i, and yi = y cosµy,i − py sinµy,i. In fact, xi, yi are the normalized
coordinates respectively in the horizontal and vertical planes at position i.

So far, we have not yet made any approximations. To carry out the
perturbation theory of the sextupoles, we need to combine the Lie factors
e−V1 ...e−Vn in Eq. (3.11) into a single Lie operator. This can be achieved
by repeatedly applying the Cambell-Baker-Hausdorf theorem e:A:e:B: = e:C:,
where C = A + B + {A,B}PB/2 + .... Here the bracket with the subscript
“PB” denotes the well-known Poisson Bracket. For the perturbation of the
sextupole strength S, we obtain

M = A−1
0 R0,n+1e

:f3+f4+...:An+1, (3.13)

where

f3 = −
n∑
i=1

Vi (3.14)

and

f4 =
1

2

n∑
i=1

n∑
j>i

{Vi,Vj}PB. (3.15)

Clearly, f3 is of the first order of S and f4 of the second order. Simi-
lar to the Hamiltonian perturbation theory [26], f3 gives the driving term
of the third-order resonances provided that the action-angle variables, x =√
2Jx cosϕx, px = −

√
2Jx sinϕx, y =

√
2Jy cosϕy, and py = −

√
2Jy sinϕy are

used.
The Poisson bracket of any pair of Vi,j can be computed easily and the

result is given by

{Vi,Vj}PB = SiSj
√
βx,iβx,j[sin(µy,i − µy,j)βy,iβy,jxixjyiyj

+sin(µx,i − µx,j)(βx,ix
2
i − βy,iy

2
i )(βx,jx

2
j − βy,jy

2
j )/4]. (3.16)

Clearly, all terms in the brackets are octupole like, namely a fourth-order
monomial in x, px, y and py. It is worth noting that this bracket vanishes
when the phase differences in both planes are integers of π.

Essentially, we have worked out the first and, more importantly, the sec-
ond order sextupole perturbation using the Lie method. Our assumption of
a thin lens could be removed since one can always divide a thick sextupole
into many thin slices and then apply the thin-lens formulas. In practice, it is
sometimes easier to compute [12] f3 and f4 numerically using the differential
algebra [27] and Dragt-Finn factorization [28].
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3.3 One Family of Sextupoles in Arc

Now we can apply the general results of the perturbation theory to the arcs
of PEP-X. As we mentioned in a previous section, we designed a periodical
cell with betatron phase advances, µx = 4π + π/4 and µy = 2π + π/4, in
the horizontal and vertical planes respectively. For the linear optics, every
eight of such cells makes an identity transformation and form an achromat.
In the design lattice, every arc consists of one such achromat. We would like
to explain why this choice was made.

Let us study an achromat that consists of eight PEP-X cells and each cell
has a thin sextupole at the same location. It is well known that f3 = 0 in the
achromat [13]. This can also be shown directly using Eqs. (3.12) and (3.14).
As a result, this beamline preserves the property of an achromat, even at a
nonlinear level, up to the first order of sextupole strength.

To proceed to the next order, we need to compute f4 using Eqs. (3.15)
and (3.16) and add up the contributions from all 28 brackets. Expressing
the result in terms of the complex coordinates, x = (ax + ia+x )/

√
2, px =

(iax + a+x )/
√
2, y = (ay + ia+y )/

√
2, py = (iay + a+y )/

√
2, we have

f4 = −1

4
S2βx{(1 + 2

√
2)[β2

x(axa
+
x )

2 + β2
y(aya

+
y )

2]

−4βy[(1 +
√
2)βx −

√
2βy](axa

+
x )(aya

+
y )

+βy[βx + 2(1 +
√
2)βy]

×[e−2i(ψx−ψy)(ax)
2(a+y )

2 + e2i(ψx−ψy)(a+x )
2(ay)

2]}, (3.17)

where ψx and ψy are the phase advances from the last sextupole to the
end of the achromat. One can easily see, by using action-angle variables

ax =
√
Jxe

iϕx , a+x = −i
√
Jxe

−iϕx , ay =
√
Jye

iϕy , and a+y = −i
√
Jye

−iϕy ,
that there are three tune shift terms and a single resonance driving term:
2νx−2νy. The other resonances, 4νx, 4νy, 2νx, 2νy, and 2νx+2νy, are canceled
out among the eight sextupoles.

As an example, we took an arc of PEP-X and inserted eight sextupoles
with a total integrated strength S = −80.0 m−2. The beta functions at
the position of the sextupoles are βx = 1.002 m and βy = 7.746 m, and
the phase advances relative to the beginning of the cell are µx = 2.0860
rad and µy = 1.6148 rad. All non-vanishing terms are calculated using
two different methods and tabulated in Table 3. As one can see in the
table, the agreement between the analytical approach using Eq. (3.17) and
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Table 3: The Lie factor f4 for a family of sextupoles in the PEP-X achromat.

Coefficients [m−1] Analytical Numerical
(axa

+
x )

2 −6.1623× 103 −6.0327× 103

(aya
+
y )

2 −3.6827× 105 −3.6823× 105

(axa
+
x )(aya

+
y ) −4.2399× 105 −4.2372× 105

(ax)
2(a+y )

2 (−2.8032− 3.8582i)× 105 (−2.8059− 3.8559i)× 105

(a+x )
2(ay)

2 (−2.8032 + 3.8582i)× 105 (−2.8059 + 3.8559i)× 105

numerical computation [12] based on the differential algebra is nearly perfect.
To further illustrate the concept of cancellation, the fourth-order driving
terms are plotted in Fig. 7 as a function of position in the achromat. As
shown in the figure, the step changes occur at the locations of the sextupoles
and the full cancellation occur both at the mid point and the end.
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Figure 7: The canceled fourth-order resonance terms driven by a family of
the sextupoles as they accumulated in the PEP-X achromat.

This kind of cancellation in resonance effects within an achromat was
discovered [12] first in one that consists of eight TME-type cells with phase
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advances of µx = 3π/4 and µy = π/4. Interestingly enough, in that case, the
only non-vanishing resonance was 2νx + 2νy.

These cancellations of fourth-order resonances are extremely general. They
only rely on the phase advances of the cell and its periodic property in the
achromat. To remove the residual resonance 2νx−2νy and the three geomet-
ric abberations, we need to utilize the specific structure of the PEP-X MBA
cell, discussed in the next section. For multipole families of sextupoles, we
have similar result that will be presented in the appendix.

3.4 A Fourth-Order Geometric Achromat

Recently, we used the lattice design code OPA [14] to optimize the settings
of 10 sextupole families. Due to the cancellations of most resonances, we
only needed to control the nonlinear chromaticities up to the second order,
the three remaining amplitude-dependent tune shifts, and the residual 2νx−
2νy resonance. A good solution with small nonlinearities was found [11].
The derivatives of the betatron tunes are calculated using the normal form
method [29] and tabulated in Table 4 along with a new solution based on
4th-order achromats (f3 = f4 = 0). As one can see from the table, the tune
shift terms are significantly reduced using the 4th-order achromats without
any degradation in the chromatic parts. The small residuals are due to the
nonlinear kinematic terms in the Hamiltonian.

Table 4: The nonlinear chromaticities and tune shifts due to betatron am-
plitudes in the PEP-X ultimate storage ring.

Derivatives of tunes OPA solution 4th-order achromats
∂νx,y/∂δ 0, 0 0, 0
∂2νx,y/∂δ

2 −54,−95 −57,−89
∂3νx,y/∂δ

3 +1350,−104 +1332,−150
∂νx/∂Jx [m−1] −5354 +253
∂νx,y/∂Jy,x [m−1] +19610 +1158
∂νy/∂Jy [m−1] −76390 −228

As outlined in the previous section, one can compute all contributions to
f4 from all families of sextupoles by using Eqs. (3.17) and (A.1). To find a 4th-
order geometric achromat, we simply adjusted the strengths of six families
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Figure 8: All 3rd-order resonance terms in f3 (left) and all 4th-order res-
onance as well as three tune shift terms in f4 (right) generated by the 10
families of sextupoles as they accumulated in the PEP-X achromat.

of the harmonic sextupoles to eliminate the five non-vanishing terms in f4.
In fact, we have an infinite set of solutions which can be found by searching
numerically using the Nelder-Mead method. We use the extra degree of
freedom to minimize the peak value of the harmonic sextupoles. As a result,
the peak strength is reduced by 25% from the OPA solution. All terms in f3
and f4 are plotted as a function of the position along one of the arcs in PEP-
X in Fig. 8. One can see from the figures that the numerical calculations
using the actual beamline confirm the analytical results. Although we have
not analyzed the chromatic effects in this paper, in fact both the first- and
second-order dispersions are also canceled within this achromat as shown in
reference [13].

For a comparison with OPA, it is worth to pointing out what OPA does:
it uses a gradient search minimizer with empirically set weight factors on
analytic formulae for the geometric Hamiltonian modes of 1st and 2nd order
in sextupole strength and on chromaticities up to 3rd order obtained by
numeric differentiation. So it may be rather blind and could end up in some
local minimum depending on starting values and the user’s selection of weight
factors. To set f3 = f4 = 0 in our method may be a superior approach leading
to a true optimum.

It is worth noting that the theory of higher-order achromats was devel-
oped by Dragt [30] who found also a numerical example of 4th-order achromat
using not only sextupoles but also octupoles. Comparing to his solution, ours
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is much simpler and more practical because octupoles are not used.

3.5 Damping Wiggler

Because the emittance of PEP-X will increase by a factor of 2 from the
zero-current natural value of 29 pm-rad achieved with the 7BA lattice due to
intra-beam scattering with 200-mA stored beam current (Section 5), a further
reduction in emittance by about a factor of three is needed to reach the
diffraction limit for 1-Å X-rays (assuming 100% horizontal-vertical emittance
coupling). This emittance reduction can be achievied using one or more
strong damping wigglers in one or more dispersion-free regions.

The relative reduction in natural emittance from ϵ0 to ϵw0 caused by a
damping wiggler in PEP-X can be estimated using an approximate analytical
expression [31]:

ϵ0w
ϵ0

= (
Ix0
Ixw

)
1 + 4Cq

15πIx0
Npγ

2<βxw>ρo
ϵx0ρ2w

θ3w

1 + 1
2
Np

ρo
ρw
θw

, (3.18)

where Ixw, Ix0 are damping partition numbers with and without wigglers, Np

is the number of wiggler periods, < βxw > the average horizontal β-function
in the wiggler, ρw the bending radius at peak wiggler field, θw = λw/2πρw and
λw the wiggler period length. Here ρo = ρcρm/(rρc+(1−r)ρm) is the effective
bending radius in the MBA cell, with ρc and ρm being the bending radii in
the main cell dipole and the matching dipole, respectively, and r being the
relative contribution from the matching dipoles to the total bending angle.

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

Wiggler field (T)

ε 0w
/ε

0

 

 

Length = 89.7 m

λ
w

 = 15 cm

λ
w

 = 10 cm

λ
w

 =  5 cm

λ
w

 = 3 cm

0 50 100 150
0.2

0.4

0.6

0.8

1

1.2

Wiggler length (m)

ε 0w
/ε

0

 

 

B
w

 = 1.5 T

λ
w

 = 15 cm

λ
w

 = 10 cm

λ
w

= 5 cm

λ
w

 = 3 cm

Figure 9: Relative emittance reduction versus wiggler field (left) and versus
wiggler length (right) for various values of wiggler period.
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It follows that the emittance reduction depends on the wiggler period
length, the wiggler peak field, and the total wiggler length. Using Eq. (3.18),
Fig. 9 shows the ratio of ϵ0w/ϵ0 versus the wiggler peak field and the total
wiggler length for various values of wiggler period length, where the wiggler
is inserted in a long straight section with <βx>= 12.4 m. One can see that
most of the damping occurs within 100 m of the wiggler length, and that
a wiggler period below 5 cm does not significantly improve the damping.
Selecting a 90-m long wiggler with a 5-cm period, it follows that the optimal
peak field is 1.5 T. It should be noted that a short 5-cm wiggler period implies
a small wiggler gap of 7.7 mm when using a hybrid magnet design [32]. A
wiggler with the above parameters has been modeled in the lattice using an
array of alternating field short dipoles. The wiggler is placed in one 123-m
long FODO straight section, where it is split into 18 sections to fit between
the quadrupoles. The resultant emittance with wigglers at zero current is
ϵ0w = 11 pm-rad.

The damping wiggler creates various negative effects on the PEP-X beam.
It increases the beam rms energy spread from 0.072% to 0.12%, and the
radiation loss per turn from 0.36 MeV to 2.95 MeV. The latter amounts to
0.59 MW at a 200 mA current. Finally, the wiggler field has intrinsic non-
linear components on the beam trajectory affecting large amplitude particles.

4 Dynamic Aperture

Ultimately, the goal of minimizing sextupole non-linear aberrations is to
maximize the PEP-X dynamic aperture for efficient horizontal injection and
long beam lifetime. The two sextupole solutions described in Section 3.5
were compared: the empirical optimization using OPA and the analytical
4th-order geometric achromat. Note that the latter uses the same chromatic
sextupole strengths as in the OPA solution. The dynamic aperture was ob-
tained in particle tracking simulations using the LEGO [33] and elegant [34]
codes. The calculations included on-momentum and off-momentum particles
and magnet errors. To include the effects of the wiggler intrinsic non-linear
field, the 1st order dipole wiggler model was replaced by an exact non-linear
field wiggler model [35] in the LEGO simulations.
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4.1 Error-Free Aperture

To verify the effect of residual sextupole aberrations, dynamic apertures for
the OPA and the 4th-order geometric achromat solutions were compared
without magnet errors and with momentum error δ up to 2%, as shown in
Fig. 10. The better cancellation of sextupole 4th-order geometric terms in
the achromat solution results in a superior on-momentum aperture in both x
and y planes as compared to the OPA solution. The achromat off-momentum
aperture is also slightly better, but much closer to the OPA aperture due to
the fact that the two solutions use the same strengths for the chromatic
sextupoles, leading to similar chromatic aberrations (see Table 4). Based
on this comparison, we chose the achromat solution for the PEP-X ultimate
lattice.

Figure 10: Momentum dependent dynamic aperture without errors for OPA
(left) and 4th-order geometric achromat (right) solutions with chromaticity
set to zero, where: δ = 0 (blue solid), 0.5% (blue dash), 1% (red solid), 1.5%
(red dash), 2% (green).

4.2 Error Tolerances

Magnet field and alignment errors create linear and non-linear optics pertur-
bations. These include distortion of the closed orbit and betatron functions,
transverse coupling, chromaticity, variation of betatron tune with amplitude
and excitation of betatron resonances leading to reduced dynamic aperture.
To maintain a sufficient aperture, the ring must include efficient correction
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schemes; also, the magnitude of such errors must be limited to an acceptable
level. To estimate the error sensitivities for the PEP-X lattice with the 4th-
order achromat sextupole solution, LEGO and elegant tracking simulations
were performed.

The elegant simulations did not include actual beam correction. Instead,
it was assumed that the errors are already corrected, and that the residual
effects are 1% beta beat and 1% transverse coupling. These were simulated
with sufficiently small random quadrupole field and tilt errors. The resul-
tant dynamic aperture for 50 machine settings of random errors is shown in
Fig. 11.

Figure 11: Dynamic apertures in elegant (left) simulation for 50 sets of
random errors (red) and without errors (black) and in LEGO (right) for
10 sets of random errors (dash), the average aperture (green), and aperture
without errors (red).

LEGO simulations included realistic correction of orbit, beta beat, linear
chromaticity, transverse coupling and vertical dispersion. The studied errors
included magnet field errors, horizontal and vertical misalignment, magnet
roll errors, and higher order multipole field errors. The latter were based
on the measured field in the PEP-II magnets [36] but applied to a smaller
bore radius of the PEP-X magnets. No errors were applied to beam position
monitors, and the linear chromaticity was adjusted to +1.

It was found that rms misalignment of 20 µm, rms roll error of 0.1 mrad,
and relative rms field error of 10−3 in dipoles, quadrupoles and sextupoles
are acceptable. Dynamic apertures with the above errors including the high
order multipole field errors for 10 random settings after correction are shown
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in Fig. 11. Here, the average on-momentum horizontal dynamic aperture is 8
mm which is sufficient for off-axis injection assuming a high quality injected
beam with 1µm-rad normalized emittance and effective septum width of 3
mm [20]. It should be noted that a smaller dynamic aperture could still be
accommodated using on-axis injection.

5 IBS and Touschek Lifetime

Intra-beam scattering (IBS) describes multiple Coulomb scattering that leads
to growth in emittance and energy spread in electron machines, whereas the
Touschek effect concerns large single Coulomb scattering events where energy
transfer from transverse to longitudinal planes leads to particle loss. In low
emittance machines such as PEP-X, both effects are important.

5.1 Intra-beam scattering

We understand that obtaining round beams in a storage ring will likely en-
tail the use of coupling or vertical dispersion. But for simplicity here, for the
purpose of IBS calculations, we assume that the vertical emittance is pri-
marily generated by the coupling, and the effects of the vertical dispersion
can be ignored. Then the vertical emittance is proportional to the horizontal
emittance, and we write

ϵx =
ϵ

1 + κ
and ϵy =

κϵ

1 + κ
, (5.1)

with κ being the coupling constant between 0 and 1 and ϵ = ϵx+ϵy being the
sum emittance at finite current with IBS. The nominal (no IBS) horizontal
and vertical emittances are given by ϵx0 = ϵ0w/(1+κ) and ϵy0 = κϵ0w/(1+κ),
where ϵ0w is the natural emittance with the damping wigglers at zero current
and its value is given in Table 2. Note that our treatment of coupling is a
simplified one that is often used in the case of small coupling; it assumes that
the eigenfunctions of the transverse motion are only slightly perturbed by the
coupling. In our case of full coupling we need to make a similar assumption.
In any case, for the PEP-X IBS calculations to be presented below, we will
at the end confirm the results with calculations using the program SAD [37],
one that treats coupling correctly without assumptions.
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In our calculation here we make the assumption that the transverse IBS
growth rate approximately satisfies

ϵx0
τx

+
ϵy0
τy

− ϵx
τx

− ϵy
τy

+
ϵx
Tx

= 0 , (5.2)

where τx, τy, signify the radiation damping times in x, y, and 1/Tx gives the
IBS growth rate in amplitude (the growth rate in emittance is just 2/Tx). A
similar expression is also used in elegant. The first two terms in Eq. (5.2)
represent quantum excitation growth rates, the next two terms those of radi-
ation damping, and the last term that of IBS. (A similar equation applies for
the growth in momentum.) Writing Eq. (5.2) in terms of the sum emittances
ϵ and ϵxw, and solving the corresponding energy spread equation, we find
that the steady-state values are given by

ϵ =
ϵ0w

1− τ ∗x/Tx
and σ2

δ =
σ2
δw

1− τs/Tp
, (5.3)

where τ ∗x = τx/(1 + κτx/τy). The quantities σδw, τs, and 1/Tp signify, re-
spectively, the nominal beam size, the radiation damping time, and the IBS
growth rate in momentum. Note that taking τ ∗x = τx does not significantly
affect the results in the case of small coupling; in the case κ = 1, however, it
overestimates the effective IBS growth rate by a factor ∼ 2 (if τx ∼ τy).

For PEP-X IBS growth rates we employ the Bjorken-Mtingwa (B-M)
formulation [38], using the Nagaitsev [39] algorithm for efficient calculation.
B-M gives the local growth rates δ(1/Tx) and δ(1/Tp) as integrals that depend
on beam properties and local lattice properties. These integrals are numeri-
cally performed for all positions around the ring, and then the growth rates
are averaged to give ⟨δ(1/Tx)⟩ = 1/Tx, ⟨δ(1/Tp)⟩ = 1/Tp, where ⟨⟩ means
to average around the ring. Given the growth rates, the steady-state ϵ qnd
σδ are obtained by solving Eqs. (5.3) simultaneously. Since the growth rates
depend on the beam emittances, energy spread, and bunch length, Eqs. (5.3)
are solved by iteration using a Newton’s method.

A simplified model of the B-M equations that can be used (with slight
modification) to approximate the results for PEP-X is the so-called “high
energy approximation” [40]. We present it here since it relatively clearly
shows the parameter dependence of IBS, though to obtain the numerical
results for PEP-X (given below) we will use the more accurate B-M equations.
According to this simplified model the IBS growth rate in energy spread is
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given by
1

Tp
≈ r2ecNb(log)

16γ3ϵ
3/4
x ϵ

3/4
y σzσ3

δ

⟨
σH g(a/b) (βxβy)

−1/4
⟩
. (5.4)

Here re is the classical radius of the electron, c the speed of light, Nb the
number of electrons per bunch, (log) the Coulomb log factor, γ the Lorentz
energy factor, σz the bunch length, and βx and βy the optical beta functions.
Other factors in Eq. (5.4) are defined by

1

σ2
H

=
1

σ2
δ

+
Hx

ϵx
, a =

σH
γ

√
βx
ϵx

, b =
σH
γ

√√√√βy
ϵy
, (5.5)

g(α) = α(0.021−0.044 lnα) , (5.6)

with Hx the dispersion invariant defined in Eq. (3.3). Note that the high
energy approximation has validity when a, b ≪ 1, which holds for PEP-X
parameters.

In the high energy approximation, the horizontal IBS growth rate is given
in terms of the momentum growth rate simply as

1

Tx
=
σ2
δ

ϵx
⟨Hxδ(1/Tp)⟩ . (5.7)

We see that only the arcs contribute significantly to IBS-induced emittance
growth, since only in the arcs is Hx non-zero. Note that in the original
description of the high energy approximation (Ref. [40]), ⟨Hxδ(1/Tp)⟩ in
Eq. (5.7) is replaced by ⟨Hx⟩(1/Tp); for the PEP-X lattice, however, there
are correlations that make that version of the equation a poor approximation
to B-M.

In scattering calculations like IBS, a Coulomb log term, (log) in Eq. (5.4),
is often used to take into account the contribution of very large and very small
impact parameter events. Due to the small impact parameter events, the tails
of the steady-state bunch distributions are not Gaussian and the standard
way of computing (log) overemphasizes their importance. To better represent
the size of the bunch core, we adjust (log) to cut away events with growth
rate greater than the synchrotron damping rate, as was first proposed by
Raubenheimer [41],[42]. For PEP-X, (log) becomes ≈ 11.

For our IBS calculations for PEP-X using lattice parameters found in
Table 2, we assume that the nominal current is below the threshold of the
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microwave instability and that potential well bunch lengthening is not signif-
icant (so that σz = σzw σδ/σδw). We assume the vertical emittance is given
by coupling with κ = 1. The results of our IBS calculations for the PEP-X
lattice at the nominal I = 200 mA with the number of bunches M = 3300,
which corresponds to 0.5 nC bunch charge, are shown in Table 5, where we
give steady-state emittances, ϵx and ϵy, energy spread σδ and bunch length
σz. We note that for PEP-X, IBS has little effect on σδ and σz; however, at
the nominal current ϵx is double the zero-current value.

Table 5: Steady-state beam parameters with 200 mA in PEP-X and x-y
coupling parameter κ = 1: nominal (zero-current) horizontal ϵx0 and vertical
ϵy0 emittances; steady-state horizontal ϵx and vertical ϵy emittances; relative
energy spread σδ, bunch length σz; and Touschek lifetime T .

ϵx0 [pm] ϵy0 [pm] ϵx [pm] ϵy [pm] σδ [10
−3] σz [mm] T [hrs]

5.5 5.5 11.5 11.5 1.25 3.12 3.5

At nominal current the horizontal IBS growth rate is T−1
x = 52 s−1, and

the energy growth rate T−1
p = 7.4 s−1. The growth rate, as expected, is

significant only in the arcs. Note that from the high energy approximation,
Eqs. (5.4) and (5.7), we obtain T−1

x = 53.7 s−1 and T−1
p = 8.9 s−1, in reason-

able agreement to the Bjorken-Mtingwa solution.
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Figure 12: Steady-state emittances as function of bunch current in PEP-X
with round beams (κ = 1).

A comparison IBS calculation was performed using the optics program
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SAD [37]. SAD treats coupling without assumptions by obtaining e.g. the
true emittance invariants, and it can also solve the B-M IBS equations. For
the calculation in the dispersion-free regions of PEP-X, we first adjusted
quadrupole strengths to bring the tunes close together. Then 400 quadrupole
magnets (in these regions) were rotated by small random amounts and ad-
justed by an overall scale factor to give ϵx0 ≈ ϵy0. Finally IBS calculations
were performed, giving ϵx ≈ ϵy ≈ 11 pm, a result not far from our earlier ob-
tained 11.5 pm. Note that the SAD calculations were repeated for 10 seeds
(for the random number generator), and the results varied by only a few
percent.

In addition to the calculations for nominal current, we have also calculated
the steady-state emittances ϵx and ϵy as functions of beam current I; the
result is shown in Fig. 12 (the solid curve). In our calculations we have again
observed that for PEP-X the growth of longitudinal emittance due to IBS
is very small. This means that, to a good approximation, σδ and σz can
be taken to have their nominal values and one need only solve the first of
Eqs. (5.3). In this case the horizontal emittance as a function of current can
be approximated by a solution (the maximum real solution) of the equation(

ϵx
ϵx0

)5/2

−
(
ϵx
ϵx0

)3/2

= α
(
I

IA

)
, (5.8)

with α a constant and IA = 17 kA the Alfvén current. Here the best fit is
obtained with α = 3.2× 105 (see the dashed curve in Fig. 12).

Figure 13: Emittance ϵx = ϵy vs. energy for a round beam at nominal bunch
current (black) and at zero current (red).

Finally, to demonstrate that 4.5 GeV is near the optimal energy for our
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lattice, we have performed IBS calculations for different energies. Note that
the lattice is scalable with energy except in the wiggler and undulator regions
which are assumed to have nominally fixed-field magnets. In Fig. 13 we plot
emittance ϵx = ϵy vs. electron energy E; we see that the emittance minimum
is broad, and that the minimum is near our nominal energy.

5.2 Touschek lifetime

Touschek lifetime calculations normally follow the flat-beam equation of
Brück [43], with modifications by Piwinski [44]. For round beam calcula-
tions we will begin here with the more general formula (i.e. not limited to
flat beams) due to Piwinski [44], [45]. With the Touschek effect the number
of particles in a bunch decays with time t as

Nb =
Nb0

1 + t/T
, (5.9)

with Nb0 the initial bunch population, and T the Touschek lifetime. Note
that the decay is not exponential. The lifetime is given by [44]

1

T
=

r2ecNb

8
√
πβ2γ4σzσδϵxϵy

⟨σHF(δm)⟩ , (5.10)

with

F(δm) =
∫ ∞

δ2m

dτ

τ 3/2
e−τB+I0(τB−)

[
τ

δ2m
− 1− 1

2
ln

(
τ

δ2m

)]
, (5.11)

B± =
1

2β2γ2

∣∣∣∣∣βxσ2
x

ϵxσ̃2
x

± βy
ϵy

∣∣∣∣∣ , (5.12)

where σH is defined in Eq. (5.5), and again ⟨⟩ indicates averaging around
the ring. In this formula the only assumptions are that there is no ver-
tical dispersion and that the energies are non-relativistic in the beam rest
frame (γ2σ2

x/β
2
x, γ

2σ2
y/β

2
y ≪ 1); there is no requirement that the beam be

flat. Parameters are average velocity over the speed of light β, modified
Bessel function of the first kind I0, relative momentum acceptance δm (half

aperture), and beam sizes σx =
√
βxϵx + η2xσ

2
δ and σ̃x =

√
βxϵx + βxHxσ2

δ .
We have calculated the momentum aperture as a function of location in

PEP-X, including machine errors described in section 4.2, in the following
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Figure 14: The momentum acceptance, δm, for PEP-X with machine errors.
This function is used in finding the Touschek lifetime.

manner. In tracking, at a given position s, a beam particle is given an initial
relative positive momentum kick δm, and it undergoes betatron and syn-
chrotron oscillations. The largest value of δm for which the particle survives
defines the positive momentum aperture at position s. Then the same is
done for a negative momentum kick. The results are displayed in Fig. 14.
This local momentum acceptance is used in Touschek lifetime calculation for
PEP-X and the result is 3.5 hours. Note that the calculation without errors
yields 11 hours.
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Figure 15: Touschek lifetime T vs. (global) momentum acceptance parameter,
δm (blue symbols). The dashed curve gives the fit: T = 0.088(δm/0.01)

5 hrs.

Finally, to study the sensitivity of Touschek lifetime to momentum ac-
ceptance, we computed T vs. the global momentum acceptance parame-
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ter, δm (see Fig. 15, blue symbols). The dashed curve gives the fit: T =
0.088(δm/0.01)

5 hrs. We see that if we want a reasonable lifetime, we cannot
allow δm to be significantly worse than ±0.02.

6 Impedance and Instabilities

For the baseline design of PEP-X [20], an impedance budget was accumulated
and calculations were performed on longitudinal and transverse instability
thresholds and on growth rates. In the present report we again perform
such calculations but go into less detail. We justify this by the fact that the
present bunch current is a factor of 7.5 smaller than the previous one, and
consequently instabilities are not such an important issue. We here briefly
address three instabilities: (i) the single-bunch microwave instability excited
by coherent synchrotron radiation (CSR), (ii) the single-bunch transverse
mode coupling instability (TMCI) due to the resistance in the walls, and
(iii) the multi-bunch transverse instability driven by the wall resistance.

6.1 Microwave Instability due to CSR

For the baseline design of PEP-X an impedance budget and single bunch wake
representing the entire ring was generated. These were used to estimate the
threshold of the microwave instability, which was found to be comfortably
above the earlier design current of 1.5 A. Here we estimate the microwave
threshold due only to one contributor to the impedance, shielded CSR. In
the model used for the calculations the beam is assumed to be moving in a
circle of radius ρ (in the plane y = 0) between two parallel plates at locations
y = ±h. In normalized units the threshold current Sth is given as a function
of shielding parameter Π by [46]

Sth = 0.50 + 0.12Π , (6.1)

with

S =
eNbρ

1/3

2πνsγσδσ
4/3
z

, Π =
σzρ

1/2

h3/2
. (6.2)

withNb being the number of electrons per bunch and νs being the synchrotron
tune.

The PEP-X vacuum chamber in the arcs is elliptical with axes (bx, by) =
(20.0, 12.5) mm and bending radius ρ = 100.8 m; we let h = 12.5 mm in the
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calculations. With these assumptions we find that for PEP-X the shielding is
significant: with Π = 22.7, the threshold bunch population N th

b = 4.9× 1010,
and the threshold current I th = 3.6 A—high above the design current. (Note
that, even if we were to increase the aperture so that there is no shielding,
Sth = 0.50 and the threshold would be 0.58 A, significantly above the design
current.)

6.2 Transverse Single Bunch Instability

In most light sources with regions of small-aperture vacuum chambers, the
resistive wall is the dominant contribution to the transverse single-bunch
instability. The kick factor (the average kick experienced over a bunch)for a
Gaussian bunch passing through a round, resistive beam pipe is given by

κy = (0.723)
c

π3/2b3

√
Z0

σzσc
, (6.3)

with b the radius of the pipe, Z0 = 377 Ω, σz the bunch length, and σc the
conductivity of the beam pipe. The single bunch threshold current is given
by [47]

I thb ≈ 0.7
4πc νs(E/e)

C
1∑

i ℓiβy,iκy,i
, (6.4)

with C the circumference of the ring. The multi-bunch threshold is I th =
MI thb , with M the number of bunches. Eq. (6.4) allows for several region
types in the ring, each of total length ℓ, beta function βy, and kick factor κy.

The five region types of PEP-X and their beam pipes are described in
Table 6. For the threshold calculation we use the information in the table,
letting the vertical half-aperture be b; the conductivities of Al (Cu) is taken to
be 3.5 (5.9) × 107 Ω−1m−1. We see that the undulator and wiggler sections
dominate because of their small vertical apertures. We find the threshold
current is I = 1.8 A, comfortably above the nominal current.

6.3 Multi-bunch Transverse Instability

The resistive wall impedance is often the dominant contributor to the trans-
verse coupled bunch instability in storage rings. Assuming only this source
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Table 6: PEP-X beam pipe chamber types, giving total length, cross-sectional
shape, half-height in x and y, type of metal coating, and average beta func-
tion. Note that straights are divided into regular (r) and injection (i) types.

Type Length [m] Shape (bx, by) [mm] Metal ⟨βy⟩ [m]

Arcs 1318 Elliptical (20.0, 12.5) Al 7.0
Straights r 510 Round (48.0, 48.0) Al 15.6
Straights i 123 Round (48.0, 48.0) Al 60.0
Undulators 158 Elliptical (20.0, 3.0) Cu 2.8
Wigglers 90 Rectangular (22.5, 4.0) Cu 12.0

of impedance, the growth rate of the instability can be estimated as [48]

Γ =
c (I/IA)

4γ
√
C(1− [νy])

⟨βA⟩ (6.5)

where

⟨βA⟩ = 4√
πZ0

∑
i

ℓiβy,i
b3i
√
σc,i

, (6.6)

[νy] being the fractional part of the vertical tune. Here the beam pipe is
again assumed to be round with radius b.

For the growth rate calculation we again use the information in Table 6,
letting the vertical half-aperture be b. Again the undulator and wiggler
sections dominate due to the small vertical aperture. We find that the total
growth rate Γ = 1.4 ms−1, equivalent to a growth time of 99 turns, which
should be not too difficult to control with feedback.

7 Conclusion

In this paper, we have most significantly developed a systematic method
based on 4th-order geometric achromats to design an USR where the sex-
tupole magnets are the dominant sources of the nonlinearity. One may choose
a different achromat for the design of the lattice; however, our methodology
is still applicable. In fact, we know that there are many similar solutions
of 4th-order achromats. Since they are not quite relevant to the design of
PEP-X, we chose not to present them in this paper.
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To make a 4th-order geometric achromat, we chose to eliminate all three
tune shift terms in the Lie generator f4. In general, this choice may not be
suitable for other lattices. Our method can be easily modified to have any
values of those three terms. This will allow us to have full control of the
size and orientation of the beam footprint in the tune space of the transverse
dimensions.

Our design of the PEP-X USR utilizes the existing PEP-II tunnel, its
high power and low emittance injector, and much of the PEP-II RF sys-
tem. Perhaps most importantly, the design does not rely on new technology
developments and is therefore essentially ready to be built.

Looking forward, there are many interesting topics that can be studied
to improve our design. Among them, the most urgent one is to search an
efficient and robust method to obtain round beams in electron storage rings.
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Appendix

A Multi Families of Sextupoles in Arc

Naturally, we would like to extend the calculation to multiple families of
sextupoles in the achromat. While we can use Eq. (3.17) to compute the
contribution within any family, the new kind of contribution we need to
calculate is the crossing pairs between any two families. For the PEP-X
case, we compute 64 brackets and then add them up. The expression is
rather complicated but the property of the cancellation is magically retained
as shown:

f4 = −1

8
S1S2

√
βx1βx2{2βx1βx2[3(1 +

√
2) cos(ψx1 − ψx2)

+3 sin(ψx1 − ψx2) + (
√
2− 1) cos 3(ψx1 − ψx2)

+ sin 3(ψx1 − ψx2)](axa
+
x )

2 + 2βy1βy2[4(1 +
√
2) cos(ψx1 − ψx2)

+(
√
2− 1) cos(ψx1 − ψx2 + 2ψy1 − 2ψy2)
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−(
√
2 + 1) cos(ψx1 − ψx2 − 2ψy1 + 2ψy2)

+4 sin(ψx1 − ψx2) + sin(ψx1 − ψx2 + 2ψy1 − 2ψy2)

+ sin(ψx1 − ψx2 − 2ψy1 + 2ψy2)](aya
+
y )

2

−8[(βx1βy2 + βy1βx2)((1 +
√
2) cos(ψx1 − ψx2) + sin(ψx1 − ψx2))

+8βy1βy2((
√
2− 1) cos(ψx1 − ψx2 + 2ψy1 − 2ψy2)

+(
√
2 + 1) cos(ψx1 − ψx2 − 2ψy1 + 2ψy2)

+2 cos(ψx1 − ψx2) sin 2(ψy1 − ψy2))](axa
+
x )(aya

+
y )

+2[βx1βy2(cos(ψx1 − ψx2) + (−1 + i
√
2) sin(ψx1 − ψx2))

×e−2i(ψx1−ψy2) + βy1βx2(cos(ψx1 − ψx2)− (1 + i
√
2) sin(ψx1 − ψx2))

×e2i(ψy1−ψx2) + 4βy1βy2((1 +
√
2) cos(ψy1 − ψy2) + sin(ψy1 − ψy2))

×e−i(ψx1+ψx2−ψy1−ψy2)](ax)
2(a+y )

2

+2[βx1βy2(cos(ψx1 − ψx2)− (1 + i
√
2) sin(ψx1 − ψx2))

×e2i(ψx1−ψy2) + βy1βx2(cos(ψx1 − ψx2)− (1− i
√
2) sin(ψx1 − ψx2))

×e−2i(ψy1−ψx2) + 4βy1βy2((1 +
√
2) cos(ψy1 − ψy2) + sin(ψy1 − ψy2))

×ei(ψx1+ψx2−ψy1−ψy2)](a+x )
2(ay)

2}. (A.1)

Here we have used the same notation as for the single family and the sub-
script 1 or 2 indicating the family number. Clearly, this formula along with
Eq. (3.17) ensures that there will be no new type of resonance driving terms
that would be added to f4 when more families of sextupoles are added in
the achromat. Moreover, the same conclusion can be made for the thick sex-
tupole families since a family of thick sextupoles can be considered as a set
of families of thin sextupoles.

To give a concrete example, we use again the arc of PEP-X and add a
second family of eight sextupoles with a total integrated strength S = 100.0
m−2 located where the optical beta functions βx = 4.207 m and βy = 3.172
m and the phase advances µx = 5.8622 rad and µy = 3.1416 rad relative
to the beginning of the cell. All non-vanishing terms for the two families in
the achromat are calculated using Eqs. (3.17) and (A.1) and tabulated in
Table 7. Once again, we have excellent agreement between the two different
approaches.
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Table 7: The Lie factor f4 for two families of sextupoles in the PEP-X
achromat.

Coefficients [m−1] Analytical Numerical
(axa

+
x )

2 −8.6457× 105 −8.6453× 105

(aya
+
y )

2 −1.8251× 106 −1.8264× 106

(axa
+
x )(aya

+
y ) +2.6396× 106 +2.6405× 106

(ax)
2(a+y )

2 (−1.2405− 0.00042i)× 106 (−1.2389− 0.00036i)× 106

(a+x )
2(ay)

2 (−1.2405 + 0.00042i)× 106 (−1.2389 + 0.00036i)× 106
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