FFAG tolerance: Orbit correction with multipole errors

William Lou

Mixed multipole assignment

One assignment = Each FFAG magnet is assigned with a 16-vector

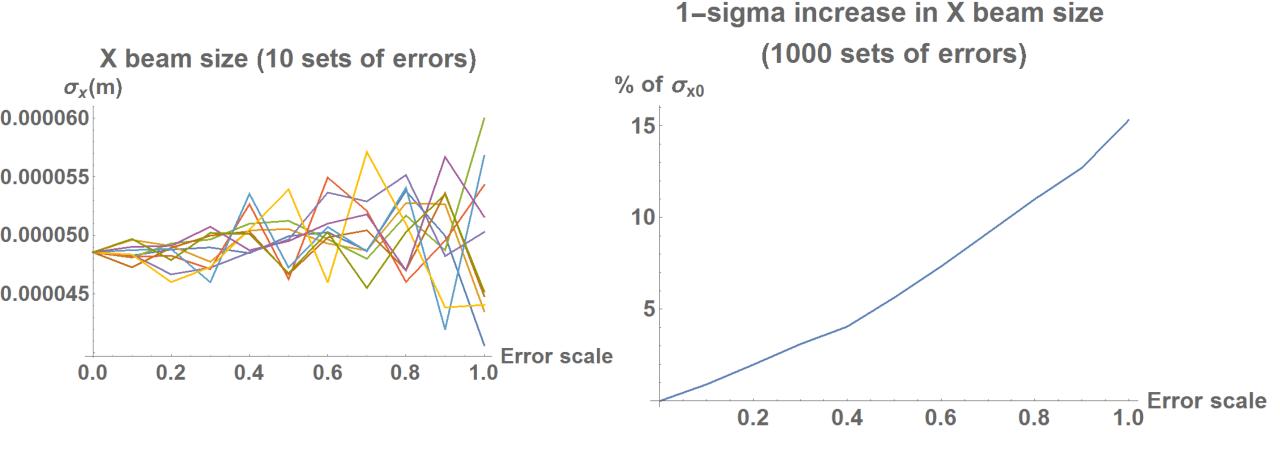
$$\frac{b_n}{lim_b_n} \quad \frac{a_n}{lim_a_n}$$

 $\frac{\overline{lim}_b_n}{\overline{lim}_b_n} \ \overline{\overline{lim}_a_n}$ Each $\frac{b_n}{\overline{lim}_b_n}$ comes from normal distr.

A number u is chosen uniformly in [0,1] for each magnet, and the 2-norm is scaled to "u^(1/16)" (to uniformly fill the 16-D ellipsoid)

The 2-norm is
$$\sqrt{\Sigma_n(\frac{b_n}{lim_b_n})^2+(\frac{a_n}{lim_a_n})^2}$$

Individual limit (u): 10 % increase

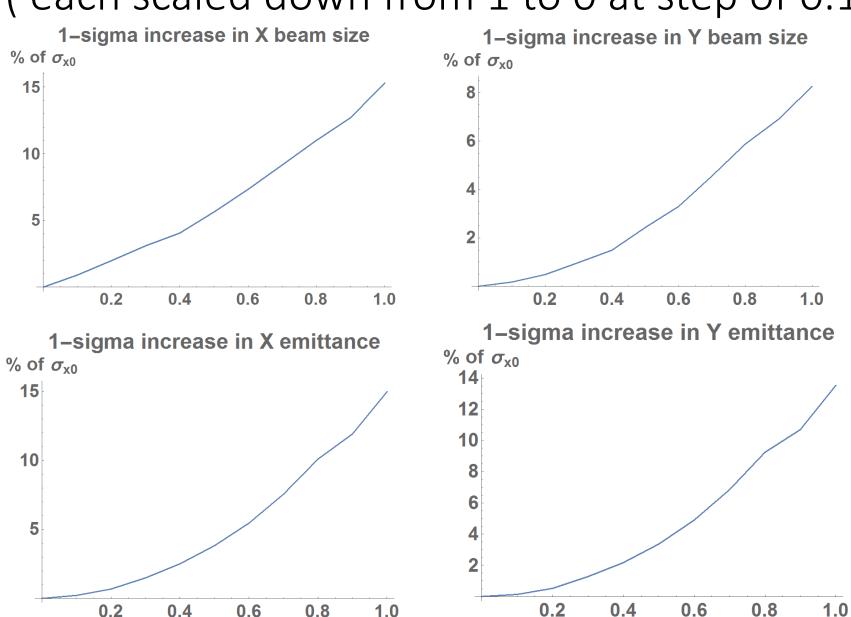

in either X/Y emittance/beam size.

b2₽	37₽	a2₽	140.
b3₽	30₊	a3₊	90₽
b4₽	26₊	a4 <i>₀</i>	80₽
b5₽	21₽	a5 _€	65₽
b6₊	21₊	a6 <i>₊</i>	63.
b7₽	19₊	a7₄	58.
b8₽	21₽	a8₽	56₽
b9 _₽	18₽	a9₊	53.

$$lim_b_n$$

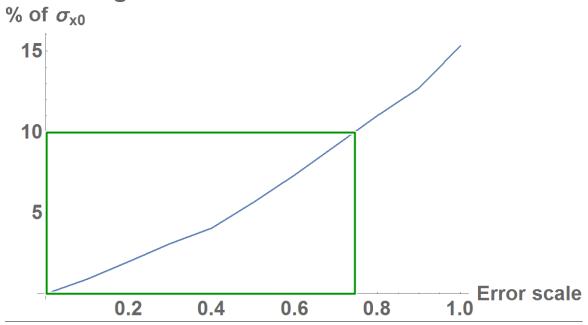
 $lim_{-}a_n$

X beam-size



Horizontal axis "error scale" = 1 means the assignment is original.

Each assignment is scaled down from 1 to 0 at a step of 0.1.


For example, at scale = 0.2, all multipole errors assigned to all magnets are 20% of the original assigned strength.

Results with 1000 assignments (each scaled down from 1 to 0 at step of 0.1)

X_beam_size is doing the worst.

1-sigma increase in X beam size

X_beam_size is doing the worst.

1-sigma x_beam_size increases by

10% when all multipoles are 75%

of the original strength

The requirement for less than 10% increase is

$$\sqrt{\Sigma_n \left(\frac{b_n}{lim_b_n}\right)^2 + \left(\frac{a_n}{lim_a_n}\right)^2} < 0.75$$

Summary

To keep increase in either X/Y emit/beam_size to be < 10%

Individual limits

b2₽	37.	a2₊	140.
b3₽	30₽	a3.	90.
b4.	26₽	a4.	80.
b5₽	21.	a5 <i>₊</i>	65.
b6₽	21.	a6 <i>₊</i>	63.
b7₽	19.	a7.	58.
b8₊	21.	a8.	56,
b9₽	18.	a9.	53.

$$B_x + iB_y = \frac{b_n + ia_n}{L} (x + iy)^n$$
 $b_n = \left[10^{-4} \frac{GL}{r_0^{n-1}}\right] u_0$

Multipole limits

$$\sqrt{\Sigma_n(\frac{b_n}{lim_b_n})^2 + (\frac{a_n}{lim_a_n})^2} < 0.75$$