

Fractional Arc Layout

First time combining:

1. Injector
2. MLC
3. Splitter Magnets (Elytt Energy)
4. FFA Permanent Magnets

Modeling:

1. GPT for Injector - MLC
2. BMAD afterwards (or for strictly single-particle effects)
3. CBETA-V online model
"The CBETA Fraction Arc Test" (CBETA Note 032)

Beam to end of Splitter (6 MeV)

CBET \mathcal{N}

Set splitter magnets to (scaled) nominal settings:
mataty
beam essentially already on viewscreen

MLC Commissioning with Beam: Energy Gain

MLC Cavity Energy Gain:

- Fix voltage
- scan cavity phase
- measure $\Delta \phi$ on downstream BPM

Model: Runge-Kutta tracking of on-axis particle from cavity entrance to $B P M\left(E_{0}, V_{c}, L, \phi_{\text {off }}\right)$:

$$
\Delta \phi=\frac{\omega}{c} \int_{\text {cav }}^{\mathrm{bpm}} d z\left(\frac{1}{\beta\left(V_{c}, \phi_{b}\right)}-\frac{1}{\beta\left(V_{c}, \phi_{b}=0\right)}\right)
$$

S1 Splitter Line: Path Length Adjustment

CBET \sim

cg248@cornell.edu- October 8, 2018 - CBETA Advisory Committee Meeting, Cornell

Orbit Response (42 MeV)

Measured corrector to BPM orbit response matrix

Nice way to verify online model/magnet calibrations

Dispersion and R56 @ 42 MeV

CBET \mathcal{K}

Scan voltage on last MLC cavity by $\pm 200 \mathrm{kV}$, measure positions on all downstream BPMs

R56: measure phase on FABPM01

Ideally, dispersion is periodic in the FA section Target value @ $42 \mathrm{MeV}=-11 \mathrm{~mm}$

Initial measurements gave -400 to 250 mm , and not periodic

Energy Scan: Dispersion, R56, Betatron Oscillations

Goals:

- Demonstrate capabilities of MLC
- Determine FA BPM offsets
- Verify optics properties vs. Energy

Procedure:

- Set MLC cavities for desired energy (E)
- Use pre-determined S1 settings @ E from model
- Steer on to periodic orbit
- Measure dispersion, R56, FA orbit response to Betatron Oscillations

MLC provided up to roughly 53 MeV energy gain 1.5 X the required 36 MeV !

Betatron Oscillations vs. Energy: BPM offsets and Tunes

Recall: MLC cavities set, S1 Quads + Dipoles set (tweaked for periodic orbit)

- 2 Linear combinations of the last two S1 Dipoles, Vertical Correctors
- In model: 2 betatron oscillations $\pi / 2$ phase apart, amplitude $\sim 1 \mathrm{~mm}$ in FFA
- Scan each kick from -2 to +2 in unit steps

$$
\begin{aligned}
& x_{m n}=\left(s_{x}^{(1)} A_{x, n}^{(1)}+B_{x, n}^{(1)}\right) \cos \left(2 \pi m v_{x, n}+\phi_{x, n}^{(1)}\right)+\left(s_{x}^{(2)} A_{x, n}^{(2)}+B_{x, n}^{(2)}\right) \cos \left(2 \pi m v_{x, n}+\phi_{x, n}^{(2)}\right)+C_{x, m}+D_{n} \\
& y_{m n}=\left(s_{y}^{(1)} A_{y, n}^{(1)}+B_{y, n}^{(1)}\right) \cos \left(2 \pi m v_{y, n}+\phi_{y, n}^{(1)}\right)+\left(s_{y}^{(2)} A_{y, n}^{(2)}+B_{y, n}^{(2)}\right) \cos \left(2 \pi m v_{y, n}+\phi_{y, n}^{(2)}\right)+C_{y, m}
\end{aligned}
$$

Guess for A's ~ 1 mm Guess for B's ~ 0 mm Guess for C's ~ 0 mm Guess for D's from 3D tracking

Betatron Oscillations vs. Energy: BPM offsets and Tunes

Determined BPM Offsets:

Energy $=1.018 * E$

MLC Vertical Offset(s)

Centering the beam in the cavities by hand seemed to show $\sim 5 \mathrm{~mm}$ offset of MLC B1 Merger

D1 Main Linac Cryomodule (MLC)

Procedure:

1. One cavity on (at a time)
2. Scan H/V beam position entering cavity hold beam angle constant (small)
3. Measure x, y on BPM before/after cavity vs. phase

$y_{f}(\phi)=m_{33}(\phi) y_{i}+m_{34}(\phi) y_{i}^{\prime}+\left(1-m_{33}\right) y_{\text {cav }}$

$m_{33}=A \cos \left(\phi+\phi_{0}\right)+B$
$\left(1-m_{33}\right) y_{\mathrm{cav}}=C \cos \left(\phi+\phi_{0}\right)+D$

Conclusion

Achievements/Concerns

Solutions

- Injector
- Best performance shows suitable match
- Level of agreement shown not reproduced during FAT
- MLC
- Cavity energy gains calibrated (to ~0.5\%)
- Energy gain up to 53 MeV (1.5 X required 36 MeV)
- At 6 MV, field stability of 10^{-4} for several hours (no trips*)
- Developed phasing procedure, but not automated
- Cavities offset vertically by 5.5 mm (average)
- Splitter
- Demonstration of Elytt magnets
- Analysis of quad data underway
- BPM non-linearity quantified
- Successful path length adjustment test
- Fractional Arc (Prototype FFA girder)
- Threaded beam to the end of FFA section
- Tunes vs. energy (agree with 3D tracking @ \% level)
- Did not quantify FA BPM non-linearity
- Misc:
- Measured machine wide corrector-BPM response matrix
- Successful tests of online model/virtual machine
- Didn't significantly test correction algorithm(s)

New settings via MOGA optimization

Script development
Analysis of original survey, re-survey

3D RF simulations

Tested SVD with online model after FAT

Dispersion and R56 vs. Energy

Splitter Line - FA
Quad scaling factor to make model agree with measurement:

Model agrees to within a few \% GOOD for first set of measurements

For future, need dispersion response matrix for finding periodic value

S1 Splitter Line

CBET \angle

FAT Virtual Orbit Correction Tests

