

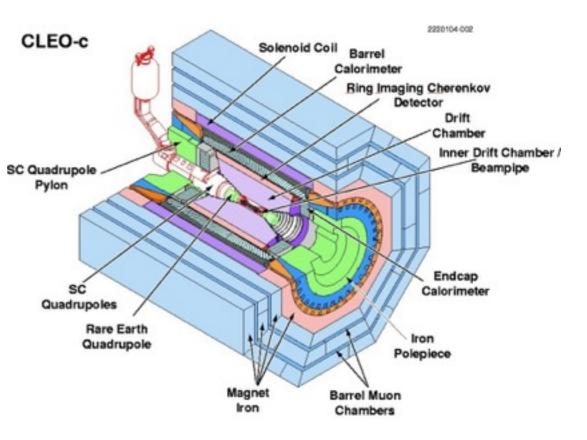
Cornell Laboratory for Accelerator-based Sciences and Education

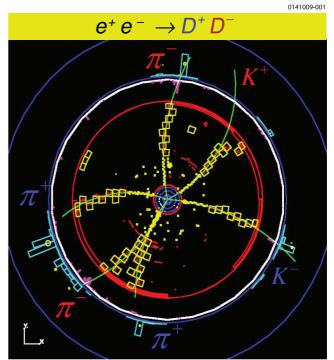
CHESS DAQ* Introduction

Werner Sun (for the CLASSE IT group), Cornell University 23 July 2015, "The More You Know" Seminar Series

* DAQ = data acquisition <u>https://en.wikipedia.org/wiki/Data_acquisition</u>

Big Data @ CHESS


- Historically, low data volumes:
 - Less than 1 GB per user group
 - Different storage solutions for each staff scientist
- But things are changing:
 - Higher flux with undulators
 - More advanced area detectors
 - Maia detector
 - Time-resolved experiments
 - Up to 400 MB/s (burst), 1 TB/week
 - NSF Data Sharing Policy
- Requires paradigm shift:
 - Central data storage
 - On-site data reduction/analysis
 - Not unique to CHESS



CLASSE: History of Big Data

- CLEO experiment, 1979-2008
 - Collected billions of e⁺e⁻ collision events
 - ~200 people, ~20 institutions, 500+ publications
 - Types of data:
 - Raw data: ~20 kB/event
 - Centrally reduced data: < 10 kB/event
 - Simulated data (typically 10-20x real data)
 - Personal analysis data
 - Total 2000-2008:
 - Raw data 80+ TB
 - Reduced + simulated data ~40 TB
 - Data analysis software developed by CLEO collaborators, analysis jobs run at Cornell
- CesrTA follows similar model to CLEO

Maia Detector

- Key driver of growth in CHESS data volume
- Designed by particle physicists at CSIRO and BNL
 - Non-trivial data acquisition pipeline, tightly integrated with CLASSE computing
 - Binary logger daemon (blogd) runs on the CLASSE central infrastructure.
 - Receives data from detector (HYMOD)
 - Writes data to disk (CHESS DAQ filesystem)
 - Data processed with GeoPIXE on the CLASSE Compute Farm
 - Compute Farm has direct access to data (no file transfers necessary)
- Average ~500 GB / user group / run
 - 8+ TB collected since early 2014

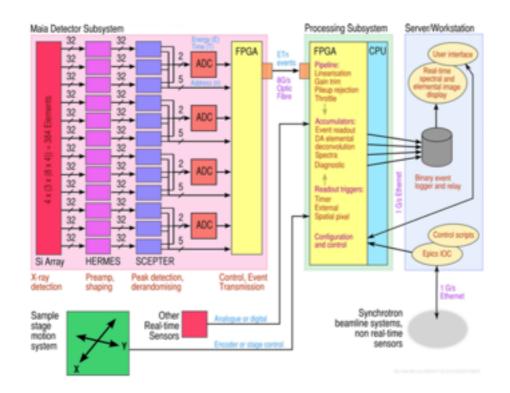
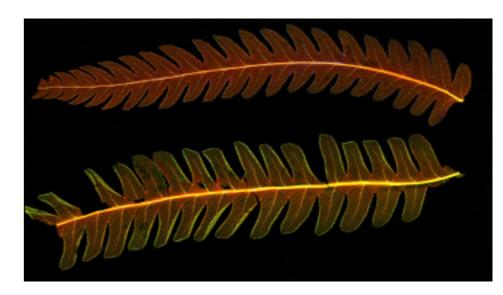
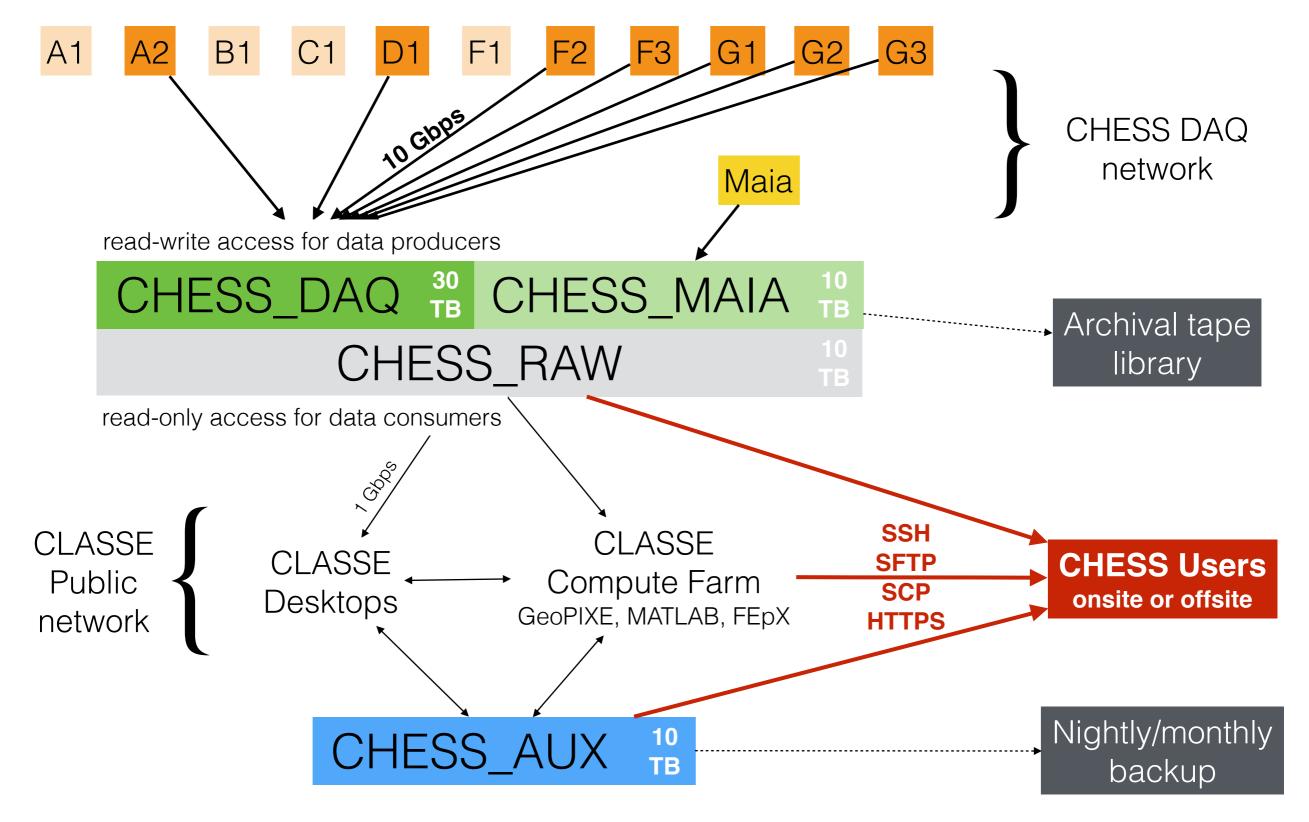



Figure 1. Functional block diagram of the Maia system.


CHESS DAQ Basics

- Unlike CLEO, many data sources at CHESS, many types of user groups
- All data producers (eventually) write to two dedicated filesystems:
 - **CHESS_DAQ**: 30 TB
 - CHESS_MAIA: 10 TB
 - [CHESS_RAW: 10 TB, read-only interface, restore point for archived data]
- Additional filesystems for previous run(s)
 - **PREVIOUSDAQ** (30 TB) and **PREVIOUSMAIA** (10 TB)
- Auxiliary (meta)data, processed data, user data
 - CHESS_AUX: 10 TB
- Software packages for CHESS
 - CHESS_OPT: 500 GB
 - Anaconda, WIEN2k, GeoPIXE, tomopy, RAW (BioSAXS)

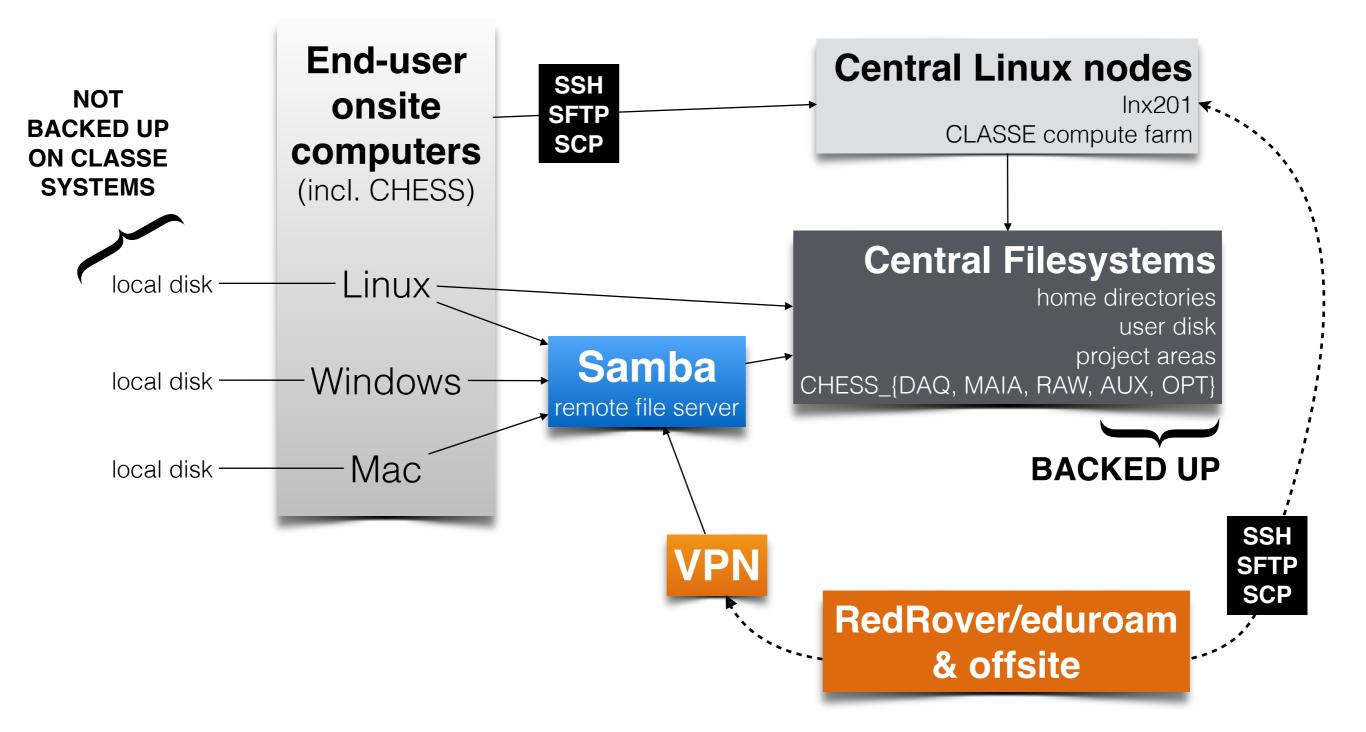
See https://wiki.classe.cornell.edu/CHESS/DataStorageManagement

CHESS DAQ Data Flow

Data Archival and Rotation

- At least two runs on disk at all times (current + previous)
- Archival and backup handled by Symantec NetBackup
 - Can request files to be restored from tape
 - Complies with NSF open access mandate and CHESS Data Management Plan
 - Data can be kept on disk upon request
- CHESS_DAQ / CHESS_MAIA:
 - After each run, two copies of data written to tape
 - One copy stored off-site (disaster recovery copy)
 - Data is archived indefinitely
 - Before next run:
 - Move data to PREVIOUSDAQ / PREVIOUSMAIA, make read-only
 - Prepare CHESS_DAQ / CHESS_MAIA directories for next run, update softlinks
- CHESS_AUX and CHESS_OPT:
 - Monthly full + nightly incremental backups

More Details


- Permissions
 - CHESS_DAQ / CHESS_MAIA:
 - Network-based permissions
 - Can be written to **only** from CHESS DAQ subnet
 - Analysis systems are on CLASSE Public network, read-only access
 - CHESS_AUX and CHESS_OPT:
 - Group-based permissions
 - Open to anyone in the "chess" security group
 - Currently includes staff, students, postdocs, users
- For CHESS users: data transfer kiosks at CHESS ops and reception
 - Can be unlocked by anyone with a CLASSE account
- Some station/analysis computers are now CLASSE-managed

Data Access & CLASSE Computing

- Centralized computing based on Linux (currently Scientific Linux 6)
 - Similar models at SLAC, FNAL, CERN, BNL, ESRF, APS, etc.
- CLASSE accounts: single sign-on for all central resources
- CLASSE Linux systems give direct access to:
 - CHESS DAQ filesystems (data, software, project space)
 - Compute Farm (includes MATLAB, Mathematica, python, etc.)
 - Personal web pages
- Access:
 - Log directly into Linux:
 - ssh <username>@Inx201.classe.cornell.edu
 - On Windows, use PuTTY or X2Go (see Computing homepage)
 - cd /nfs/chess/raw
 - Graphical file access from Windows: use Samba
 - Connect to the CLASSE VPN (see Computing homepage)
 - In Windows Explorer, browse to <u>\\chesssamba.classe.cornell.edu\raw</u>

CLASSE Connection Diagram

Usage Patterns

- Example #1
 - Log into Inx201
 - Develop C++ or python analysis on CHESS_AUX
 - Submit data analysis batch jobs to Compute Farm
 - Write output to CHESS_AUX
 - Further analysis with interactive jobs on Linux
 - Files backed up by CLASSE IT

- Example #2
 - Log into Inx201
 - Run interactive data processing/ visualization
 - Stage output to CHESS_AUX
 - Use Samba/SFTP/ SCP to copy files to personal computer
 - User responsible for backing up files

- Example #3
 - Use Samba/SFTP/ SCP to copy data to personal computer
 - Analyze data locally
 - User responsible for backing up files

CHESS DAQ Hardware

- 10 Gb storage area network (SAN)
 - Enterprise-class storage devices, servers, network switches
- 2 x Infortrend iSCSI storage devices
 - Dual controllers, redundant power
 - 24 x 4 TB drives/device configured in 2 x RAID 6
 - Total 128 TB usable
- Files served by CHESS DAQ cluster
 - 5 x IBM x3550 M4 servers
 - Each has 2 x 6-core Intel Xeon, 128 GB RAM
- Networking:
 - 10 Gb IBM Blade switches
 - New multi-mode optical fiber runs throughout CHESS
- Throughput:
 - Up to 900-1000 MB/s writes (sustained 600 MB/s)
 - Average 200-300 MB/s reads
- IBM tape library, total capacity 250 TB (uncompressed)

Current Status & Plans

- First deployment of CHESS DAQ in October 2014
 - 24 TB written so far
- CHESS DAQ network available at all beamlines
- 7 of 11 beamlines are now writing to central storage
 - Missing: B1, C1, and MacCHESS (except BioSAXS @ G1)
- Archived: 2014-3, 2015-1, plus some legacy data
- Plans for summer down:
 - Archive 2015-2 data
 - Investigate networking bottleneck at A2 with Pilatus 300K
 - Organize network switches on experimental floor
 - Convert B1 and C1 (possibly)
- Longer term: develop central software repository for CHESS

Additional Resources

- CHESS DAQ documentation:
 - <u>https://wiki.classe.cornell.edu/CHESS/DataStorageManagement</u>
 - Lyris mailing list: <u>chess-daqadmin-l@cornell.edu</u>
 - Meeting next Monday 27 July, 2 PM, Wilson 374
- CLASSE computing homepage:
 - <u>https://wiki.classe.cornell.edu/Computing/WebHome</u>
- Linux @ CLASSE:
 - <u>https://wiki.classe.cornell.edu/Computing/LinuxSupport</u>
- Central file systems:
 - <u>https://wiki.classe.cornell.edu/Computing/DataStewardship</u>
- CLASSE Compute Farm:
 - <u>https://wiki.classe.cornell.edu/Computing/ComputeFarmIntro</u>