

$$D_S^{*+} \to D_S^+ e^+ e^-$$

Souvik Das, Anders Ryd Cornell University

Contents

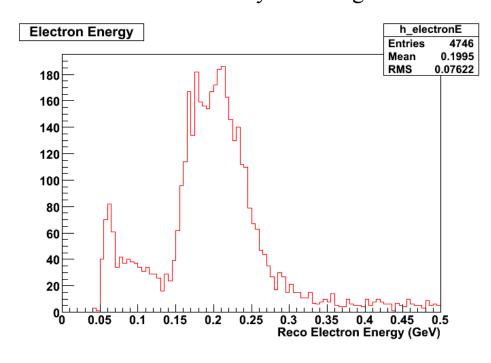
DeltaM Sideband

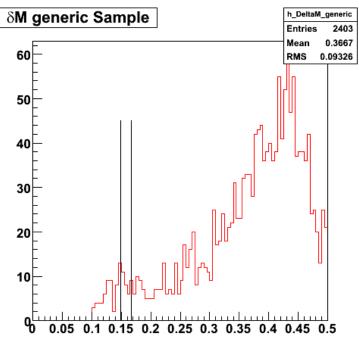
Mode	$\Delta M < 0.5~{ m GeV}$					$\Delta M < 0.3 \text{ GeV}$				
	ddmix MC	$^{ m cont}$ MC	$^{ m tot}_{ m MC}$	data	$\frac{\mathrm{data}}{\mathrm{MC}}$	ddmix MC	$_{ m cont}^{ m cont}$	$^{ m tot}_{ m MC}$	data	data MC
$K^+K^-\pi^+$	43 ± 1.5	6.2 ± 1.1	49 ± 1.8	97 ± 9.8	2 ± 0.21	4.3 ± 0.46	0.4 ± 0.28	4.7 ± 0.54	9 ± 3	1.9 ± 0.68
K_SK^+	13 ± 0.82	7.2 ± 1.2	21 ± 1.5	28 ± 5.3	1.4 ± 0.27	2.2 ± 0.33	0.8 ± 0.4	3 ± 0.52	4 ± 2	1.3 ± 0.71
$\eta \pi^+$	3.1 ± 0.4	13 ± 1.6	16 ± 1.6	26 ± 5.1	1.6 ± 0.36	0.35 ± 0.13	2.2 ± 0.66	2.6 ± 0.68	4 ± 2	1.6 ± 0.89
η/π^+	2.5 ± 0.35	0.2 ± 0.2	2.7 ± 0.4	3 ± 1.7	1.1 ± 0.68	0.2 ± 0.1	0 ± 0	0.2 ± 0.1	0 ± 0	0
$K^{+}K^{-}\pi^{+}\pi^{0}$	150 ± 2.73	23.8 ± 2.2	173 ± 3.5	400 ± 20	2.31 ± 0.12	17.1 ± 0.9	3 ± 0.8	20.1 ± 1.2	41 ± 6.4	2.03 ± 0.34
$\pi^{+}\pi^{-}\pi^{+}$	28.6 ± 1.19	72.4 ± 3.8	101 ± 4.0	225 ± 15	2.23 ± 0.17	2.6 ± 0.36	7.8 ± 1.25	10.4 ± 1.3	15 ± 3.87	1.44 ± 0.41
$K^{*+}K^{*0}$	42.8 ± 1.46	4.4 ± 0.94	47.2 ± 1.7	144 ± 12	3.05 ± 0.28	7.1 ± 0.6	0.8 ± 0.4	7.9 ± 0.72	10 ± 3.16	1.27 ± 0.42
$\eta \rho^+$	35.4 ± 1.33	57.6 ± 3.39	93 ± 3.65	128 ± 11.3	1.38 ± 0.133	4.05 ± 0.45	8.2 ± 1.28	12.2 ± 1.36	16 ± 4	1.31 ± 0.357
η/π^+	24.1 ± 1.1	45.6 ± 3.02	69.7 ± 3.21	136 ± 11.7	1.95 ± 0.19	3.05 ± 0.391	6.2 ± 1.11	9.25 ± 1.18	9 ± 3	0.973 ± 0.347

Dataset 47

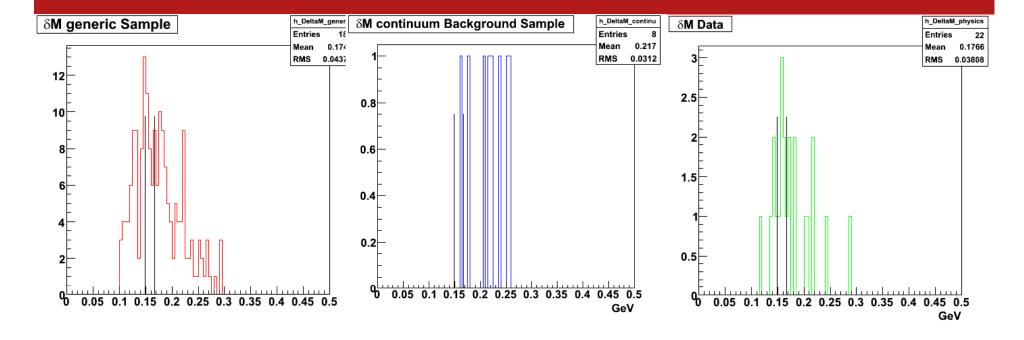
Increase statistics

Mode		4	$\Delta M < 0.5 \text{ G}$	$\Delta M < 0.3 \text{ GeV}$						
	ddmix MC	$_{ m MC}^{ m cont}$	$^{ m tot}$	data	data MC	ddmix MC	$^{ m eont}$	$_{ m MC}^{ m tot}$	$_{ m data}$	data MC
$K^{+}K^{-}\pi^{+}$	116 ± 2.4	20.6 ± 2.0	136 ± 3.2	270 ± 16.4	1.98 ± 0.13	12.9 ± 0.8	2.6 ± 0.7	15.5 ± 1.1	28 ± 5.3	1.81 ± 0.36
K_SK^+	35.8 ± 1.3	15 ± 1.7	50.8 ± 2.2	89 ± 9.4	1.75 ± 0.2	5.4 ± 0.5	1.6 ± 0.6	7.0 ± 0.8	11 ± 3.3	1.58 ± 0.51
$\eta \pi^+$	10 ± 0.7	31.6 ± 2.5	41.6 ± 2.6	55 ± 7.4	1.32 ± 0.20	1.6 ± 0.3	4.4 ± 0.9	6.0 ± 1.0	13 ± 3.6	2.18 ± 0.70
$\eta'\pi^+$	6 ± 0.6	2 ± 0.6	8 ± 0.9	10 ± 3.1	1.25 ± 0.42	0.8 ± 0.2	0 ± 0	0.8 ± 0.2	0 ± 0	$0 \pm \mathrm{nan}$
$K^{+}K^{-}\pi^{+}\pi^{0}$	406 ± 4.5	72 ± 3.8	478 ± 5.9	1003 ± 32	2.16 ± 0.07	45.1 ± 1.5	10.6 ± 1.5	55.8 ± 2.1	95 ± 9.8	1.7 ± 0.19
$\pi^{+}\pi^{-}\pi^{+}$	78.8 ± 2.0	204 ± 6.4	283 ± 6.7	548 ± 23.4	1.94 ± 0.10	7.1 ± 0.60	22.2 ± 2.1	29.3 ± 2.2	33 ± 5.7	1.13 ± 0.21
$K^{*+}K^{*0}$	115 ± 2.4	10.4 ± 1.4	125 ± 2.8	374 ± 19.3	2.99 ± 0.17	17.6 ± 0.9	1.4 ± 0.5	19 ± 1.1	28 ± 5.3	1.47 ± 0.29
$\eta \rho^+$	93.1 ± 2.2	154 ± 5.6	247 ± 6.0	357 ± 18.9	1.44 ± 0.08	11.2 ± 0.8	22 ± 2.1	33.2 ± 2.2	48 ± 6.9	1.45 ± 0.23
$\eta'\pi^+$	68.1 ± 1.9	120 ± 4.9	188 ± 5.2	364 ± 19.1	1.93 ± 0.12	7.5 ± 0.6	16.4 ± 1.8	23.8 ± 1.9	27 ± 5.2	1.13 ± 0.24

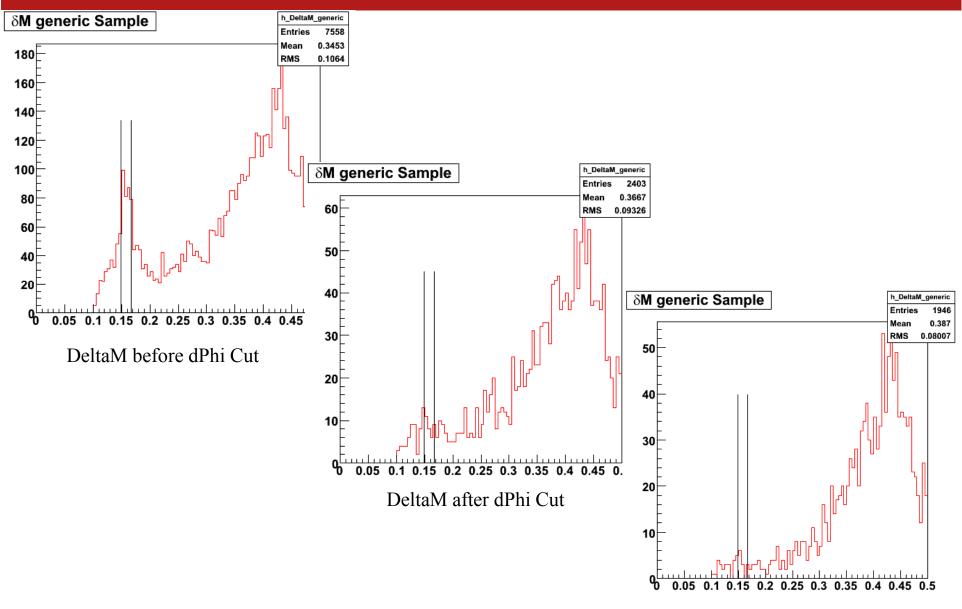

Dataset 47 + 48


Reprocessing

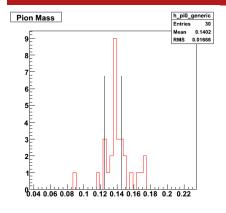
Possible Reasons of Discrepancy

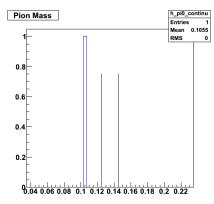

- 1. Electrons of events in the sidebands are very soft and the reconstruction efficiency is not modeled accurately in Generic MC
 - 1. So we plotted the energy (p2+m2) of the electrons to get a feel...

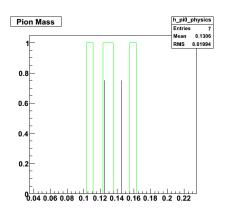
2. 3 sigma dE/dx is applied as a track quality criterion in my n-tuplizer. We should try taking this out and see if Generic MC matches data any closer. If so, then Generic MC isn't accurately modeling the dE/dx.



DeltaM after Energetic Constraints on e+e-

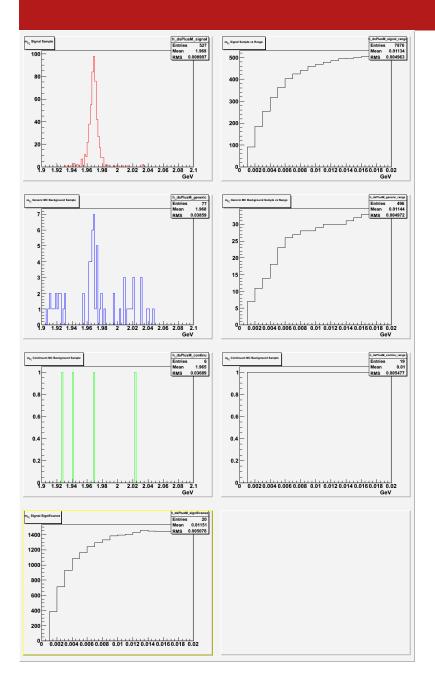

Mode		ΔM	before signs	al region		ΔM after signal region				
	ddmix MC	$_{ m MC}^{ m eont}$	$^{ m tot}$	data	data MC	ddmix MC	$_{ m MC}^{ m cont}$	$^{ m tot}$	data	data MC
$K^+K^-\pi^+$	3.1 ± 0.4	0.0 ± 0.0	3.1 ± 0.4	5.0 ± 2.2	1.61 ± 0.75	4.8 ± 0.5	1.4 ± 0.5	6.2 ± 0.7	11.0 ± 3.3	1.76 ± 0.57
K_SK^+	1.1 ± 0.2	0.2 ± 0.2	1.3 ± 0.3	0.0 ± 0.0	$0.00 \pm \mathrm{nan}$	2.2 ± 0.3	0.6 ± 0.3	2.9 ± 0.5	2.0 ± 1.4	0.70 ± 0.51
$\eta \pi^+$	0.1 ± 0.1	0.8 ± 0.4	1.0 ± 0.4	0.0 ± 0.0	$0.00 \pm \mathrm{nan}$	0.6 ± 0.2	1.4 ± 0.5	1.9 ± 0.6	3.0 ± 1.7	1.54 ± 0.99
$\eta'\pi^+$	0.2 ± 0.1	0.0 ± 0.0	0.2 ± 0.1	1.0 ± 1.0	4.00 ± 4.38	0.3 ± 0.1	0.0 ± 0.0	0.3 ± 0.1	0.0 ± 0.0	$0.00 \pm \mathrm{nan}$
$K^{+}K^{-}\pi^{+}\pi^{0}$	8.5 ± 0.7	1.2 ± 0.5	9.7 ± 0.8	11.0 ± 3.3	1.13 ± 0.35	19.4 ± 1.0	5.0 ± 1.0	24.4 ± 1.4	29.0 ± 5.4	1.19 ± 0.23
$\pi^{+}\pi^{-}\pi^{+}$	1.2 ± 0.2	4.4 ± 0.9	5.6 ± 1.0	6.0 ± 2.4	1.07 ± 0.48	3.1 ± 0.4	10.2 ± 1.4	13.3 ± 1.5	16.0 ± 4.0	1.20 ± 0.33
K++K+0	2.8 ± 0.4	0.2 ± 0.2	3.0 ± 0.4	3.0 ± 1.7	1.00 ± 0.59	7.0 ± 0.6	0.4 ± 0.3	7.4 ± 0.7	15.0 ± 3.9	2.03 ± 0.55
$\eta \rho^+$	2.6 ± 0.4	4.0 ± 0.9	6.6 ± 1.0	6.0 ± 2.4	0.91 ± 0.39	4.3 ± 0.5	10.2 ± 1.4	14.5 ± 1.5	22.0 ± 4.7	1.52 ± 0.36
$\eta'\pi^+$	1.6 ± 0.3	2.4 ± 0.7	4.0 ± 0.7	6.0 ± 2.4	1.50 ± 0.67	2.8 ± 0.4	7.8 ± 1.2	10.6 ± 1.3	9.0 ± 3.0	0.85 ± 0.30


What is the bump in DeltaM?



DeltaM after dPhi Cut and pi0 Veto

Pi0 Veto



Pi0 veto of Dalitz Decays:

- •We keep pi0 candidates built out of e+, e- and photon which reconstructs closest to the pi0 mass in the ntuplizer.
- •Plots of signal MC (top), continuum MC (middle), generic MC (bottom) for pi0 mass after all cuts have been applied on KKpi mode in Dataset 47 + 48.

Mode	Generic	Continuum	Total MC	Data	~ Expected (yet to apply pi0 veto)
KKpi	11/20	1/5	0.75	5	10.5
KsK	5/20	2/5	0.65	1	2.8
pieta	0/20	0/5	0	2	1.3
pietaprime	1/20	0/5	.05	0	0.8
KKpipi0	30/20	1/5	1.7	6	4.5
pipipi	5/20	5/5	1.25	5	3.1
KsKmpipi	10/20	0/5	.5	0	1.7
pipi0eta	8/20	2/5	.8	2	4.2
pietaprimerho	5/20	4/5	1.05	2	1.6
Total	75/20	15/5	6.75	23	30.5 6

DsMass Cut Optimizations

For KKpi channel, cut moved: from 1.96849 ± 0.02 GeV to 1.96849 ± 0.014 GeV

Reprocessing

Dataset 48 is pass2'ed and dtagged, except runs: 233087, 233088, 234056, 234058

Dataset47 has been staged out, skimming and now being pass2'ed.