

Cornell University Laboratory for Elementary-Particle Physics

$D_S^{*+} \rightarrow D_S^+ e^+ e^-$

Anders Ryd Souvik Das

Contents

The Process Dataset Used Decay Channel Used Signal and Background Selection Cuts Expected in Data Performance of Cuts Things to Do

18 June2009

The $D_S^{*+} \rightarrow D_S^+ e^+ e^-$ Process

If we write the decay of the Ds^{*+} to a real photon in the form:

$$M = \mathcal{E}_{D_S^{*+}}^{\mu} \mathcal{E}_{\gamma}^{*\nu} T_{\mu\nu}(P,k)$$

Then we can write the decay to e+,e- in the form:

$$M = \varepsilon_{D_{s}^{*+}}^{\mu} T_{\mu\nu}(P,k) \left(\frac{-ig^{\nu\sigma}}{k^{2}} \right) \overline{u}(p) i e \gamma_{\sigma} v(p')$$

Evaluating the spin-average of the invariant amplitudes and integrating over phase space, we predict the ratio of decay rates:

$$\frac{\Gamma(D_{S}^{*+} \to D_{S}^{+}e^{+}e^{-})}{\Gamma(D_{S}^{*+} \to D_{S}^{+}\gamma)} \approx 1.1\alpha$$

Dataset Used

- Use data collected at $E_{CM} = 4170 \text{ MeV} (\frac{\text{dataset } 47}{\text{dataset } 47})$
- CLEO-c has 602 pb⁻¹ of data at this energy. $D_S^{*+}D_S^{-} + D_S^{*-}D_S^{+}$ cross section is ~ 1 nb at this energy. Hence we expect ~ 602,000 $D_S^{*\pm}$ produced at this energy.
- So far, we have looked at 48.2 pb⁻¹ of data.

Decay Channel of D_S^{\pm} Used

Right now we are reconstructing the D_S^+ from the D_S^{*+} and decaying via the channel:

$$D_S^+ \to \phi \pi^+$$
$$\phi \to K^+ K^-$$

This is known to have a branching fraction of $2.18 \pm 0.33\%$

Signal

• Signal events with decay chain which we reconstruct: $D_S^{*+} \rightarrow D_S^+ e^+ e^-$

$$D_{S}^{+} \rightarrow \phi \pi^{+}$$
$$\phi \rightarrow K^{+} K^{-}$$

- predicted branching fraction = $94\% * (1.1\alpha) * 2.18\% \sim 0.017\%$
- In 602 pb⁻¹, this would mean ~ 100 produced events.
- For signal Monte Carlo, we force e^+e^- collisions to decay into $\Psi(4160)$, and then that to decay into the abovementioned channel.
- We added an EVTGEN plug-in to generate vector (D_s^{*+}) to scalar (D_s⁺), lepton (e⁻), lepton (e⁺) distributions with the invariant amplitude in consideration, apart from the invariant phase space factor.
- We refitted electrons to the electron hypothesis instead of the pion hypothesis.

We expect soft electron tracks with pT < 70 MeV which the pion fit would not do justice to.

• We generated 9,988 signal MC events.

Signal

• Background events are expected, largely, to be:

$$D_{S}^{*+} \to D_{S}^{+} \gamma$$
$$D_{S}^{+} \to \phi \pi^{+}$$
$$\phi \to K^{+} K^{-}$$

where the photon converts in the beampipe material: $\gamma \rightarrow e^+e^-$

- Without the photon conversion, the branching fraction = $94.2\% * 2.18\% \sim 2.05\%$
- In 602 pb⁻¹, this would mean ~ 12,340 produced events which may yet undergo conversion.
- For background Monte Carlo, we force e⁺e⁻ collisions to decay into Ψ(4160), and then that to decay into the abovementioned channel (without forcing the photon to convert in the beampipe).
- We refitted electrons to the electron hypothesis instead of the pion hypothesis.
- We generated 998,800 events.

Processor Level Cuts

Kaon and pion tracks must pass track quality cuts:
50 MeV < Track Momentum < 2.0 GeV
Number of hits / number expected > 0.5
chiSquared < 100,000
d0 < 5 mm, z0 < 5 cm
Kaon and pion tracks' dE/dx are fitted to 3.0 σ

•Reconstructed φ mass peak from K⁺, K⁻ cut on | $\varphi_{Mass reco}$ – 1019.5 MeV | < 100 MeV

•Reconstructed D_S^+ mass peak from φ , π^+ cut on $|D_S^+|_{Mass}$ – 1968.49 MeV | < 100 MeV

Electron tracks must pass track quality cuts:
10 MeV < Track Momentum < 2.0 GeV
chiSquared < 100,000
d0 < 5 mm, z0 < 5 cm
Electron track's dE/dx is fitted to 3.0 σ

•All these cuts, and the reconstruction of a D_S^{*+} were required for filling our n-tuples on which we applied subsequent cuts.

D_S⁺_{Mass} Cut

•Reconstructed $D_S^{+}_{Mass}$

•We cut on

$$|D_{S}^{+}Mass} - 1968.49 \text{ MeV}| < 20 \text{ MeV}$$

ΔE Cut

$\Delta E = E(K^{+}K^{-}\pi^{+}e^{+}e^{-}) - E(D_{S}^{*+}beam)$

•We cut on $|\Delta E| < 0.016 \text{ GeV}$

m_{BC} Cut

$$m_{BC} = \sqrt{E^2 (D_S^{*+} beam) - P^2 (K^+ K^- \pi^+ e^+ e^-)}$$

•Will cut on
$$|m_{BC} - 2.112 \text{ GeV}| < 0.005 \text{ GeV}$$

δm Cut

$$\delta m = M(K^{+}K^{-}\pi^{+}e^{+}e^{-}) - M(K^{+}K^{-}\pi^{+})$$

•We cut on
$$|\delta m - 0.144 \text{ GeV}| < 0.005 \text{ GeV}$$

Impact Parameters of the Electron and Positron

Difference between Impact Parameters of the Electron and Positron

•We require $d0_{e} - d0_{p} > -0.004 \text{ m}$

diffD0 vs d Φ

$d\Phi$ Cut

R Cut

$$a_1 = r_1 + d_1$$

$$a_2 = r_2 + d_2$$

$$\theta = \Phi_1 - \Phi_2$$

$$R = \frac{a_1 a_2 \sin \theta}{\sqrt{a_1^2 + a_2^2 + 2a_1 a_2 \cos \theta}}$$

Expected in Data

We have 678 signal events out of 99,880 and 26 background events out of 998,800.

In a sample of 602 pb⁻¹, we should expect to see: $602,000 \times 0.017\% \times 678/9,988 \sim 7.0$ signal events $602,000 \times 2.05\% \times 26/998,800 \sim 0.3$ background events

Performance of Cuts

Selection Cut	Signal			Background			Data
	# of Events	Marginal Efficiency	Events in 48.2 pb ⁻¹	# of Events	Marginal Efficiency	Events in 48.2 pb ⁻¹	Events in 48.2 pb ⁻¹
	4650		3.8	48219		47.7	1189
ϕ_{Mass}	4029	86.7%	3.3	43106	89.4%	42.6	424
${\rm D_S}^+_{\rm Mass}$	3641	90.4%	3.0	39682	92.1%	39.3	174
ΔΕ	1330	36.5%	1.1	1202	3.0%	1.2	5
m _{BC}	1064	80%	0.9	542	45.1%	0.5	2
δm	848	79.7%	0.7	370	68.3%	0.4	1
$d0_{e} - d0_{p}$	825	97.3%	0.7	214	57.8%	0.2	1
dΦ	678	82.2%	0.6	26	12.2%	0.03	0

Things To Do

•Optimize selection cuts

•Calculate predicted rate more accurately.

•Use the DTagging tools and use other decay modes:

$$\begin{split} & K^+K^-\pi^- \\ & K_SK^- \\ & \eta\pi^-; \ \eta \to \gamma\gamma \\ & \eta'\pi^-; \ \eta' \to \pi^+\pi^-\eta, \ \eta \to \gamma\gamma \\ & K^+K^-\pi^-\pi^0 \\ & \pi^+\pi^-\pi^- \\ & K^{*-}K^{*0}; \ K^{*-} \to K_S^0\pi^-, \ K^{*0} \to K^+\pi^- \\ & \eta\rho^-; \ \eta \to \gamma\gamma, \ \rho^- \to \pi^-\pi^0 \\ & \eta'\pi^-; \ \eta' \to \rho^0\gamma, \end{split}$$

•Reconstruct the *other* Ds (and cut on slightly different kinematic quantities)

•Electron-refit the data...