\[D_s^{*+} \rightarrow D_s^+ e^+ e^- \]

Souvik Das, Anders Ryd
Cornell University

Contents

*DsGamma

6 July 2010
Delta m Cut, as directly copied from the Ds*→Ds e+e- reconstruction is too narrow for the Ds*→Ds gamma reconstruction. It could drop events where the photon’s reconstruction is not well modeled in Monte Carlo. Hence we widened the cut to between 120 and 140 MeV.

Standard dm Cut
• The cut efficiency is found to be 18.9 %.

Widened dm Cut
• The cut efficiency is found to be 29.0%
Ds* \rightarrow Ds gamma Channel

δm Distribution in Wrong-Sign $D_s \rightarrow KK\pi$

<table>
<thead>
<tr>
<th>h_DeltaM_wrongConver</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>557760</td>
<td>0.1077</td>
<td>0.03881</td>
</tr>
</tbody>
</table>
Ds* -> Ds gamma Channel

Standard dm Cut
• #Signal Events = 4345
• I infer B(Ds*->Ds gamma) = 0.75 ± 0.05

Widened dm Cut
• #Signal Events = 6702
• I infer B(Ds*->Ds gamma) = 0.76 ± 0.05.

• The PDG value is 0.942 ± 0.007.
Ds* -> Ds gamma Channel

- We start with a Ds*+ -> Ds+ gamma sample and reconstruct the Ds** through the Ds+.
- The Ds- on the other side is decaying generically.
- Plot fitted to a double-shouldered Crystal Ball function standing on an Argus function.

Standard dm Cut
- The cut efficiency is found to be 19.2%.

Widened dm Cut
- The cut efficiency is found to be 29.8%
We start with a $D_{s}^{*+} \rightarrow D_{s}^{+}$ gamma sample and reconstruct the D_{s}^{*+} through the $D_{s}^{-} \rightarrow K K \pi$.
Ds* \rightarrow Ds gamma Channel

Standard dm Cut
- #Signal Events = 4853
- I infer $\text{B}(\text{Ds}^* \rightarrow \text{Ds gamma}) = 0.83 \pm 0.05$.

Widened dm Cut
- #Signal Events = 8051
- I infer $\text{B}(\text{Ds}^* \rightarrow \text{Ds gamma}) = 0.89 \pm 0.06$.