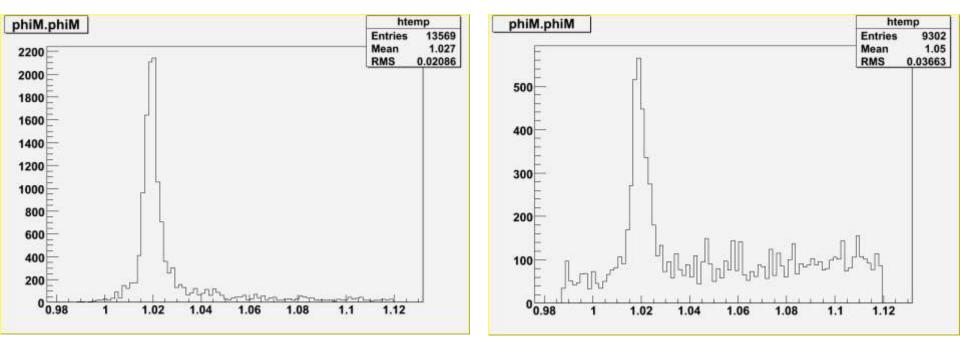
$D_{s}^{*+} \rightarrow D_{s}^{+}e^{+}e^{-}$

Work in progress...

Data and Monte Carlo

- Use data collected at $E_{CM} = 4170 \text{ MeV}$
- $D_s^{*+}D_s^{-}$ cross section ~ 1 nb at this energy.
- CLEO-c has 602 pb-1 of data at this energy.
- Hence we expect ~602,000's D_s^{*+} and an equal number of at D_s^{*-} this energy
- For MC, we added a decay channel we like to EVT Gen.
- Only the phase space distribution was simulated, the exact distribution taking into QED into account not yet in place.

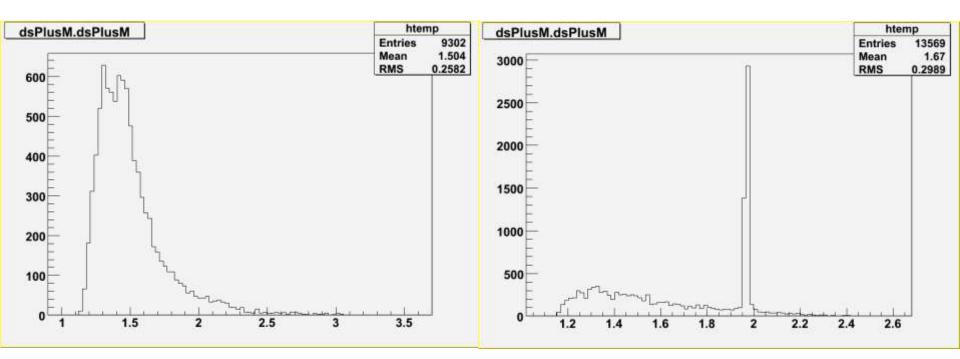

Software Version and Dataset

- Using CLEO tag 20080624_MCGEN for generation & detector simulation
- Using CLEO tag 20080228_FULL for reconstruction
- MC according to run number <u>231576</u>

Decay Chain

 $D_S^{*+} \rightarrow D_S^+ e^+ e^ D_{S}^{+} \rightarrow \phi \pi^{+}$ $\phi \rightarrow K^+ K^-$

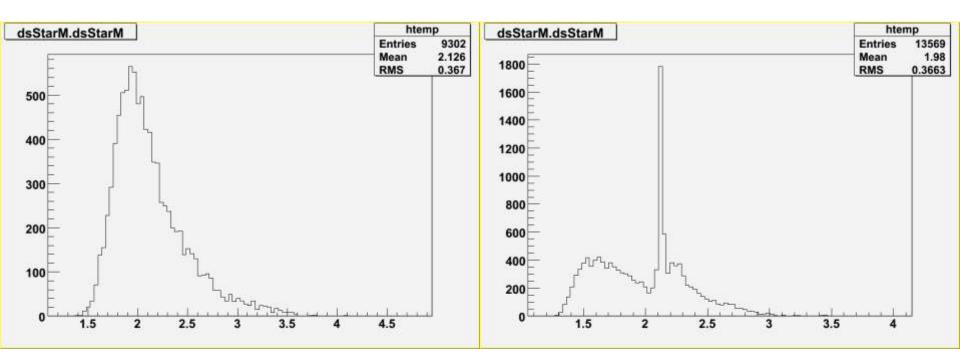
Φ mass peak



•Reconstruct phi mass peak from decay into charged kaons.

 $\phi \rightarrow K^+ K^-$

- •Kaon tracks must pass track quality cuts
 - •50 MeV < Track Momentum < 2.0 GeV
 - •Number of hits / number expected > 0.5
 - chiSquared < 100,000
 - •helix.d0 < 5 mm, helix.z0 < 5 cm
- •Kaon tracks are fitted to the hypothetical kaon dE/dx within 3.0 σ


D_S⁺ mass peak

•Reconstruct D_s+ mass peak from decay into phi and charged pion. $D_S^+ o \phi \pi^+$ •Pion tracks must pass track quality cuts

- •50 MeV < Track Momentum < 2.0 GeV
- •Number of hits / number expected > 0.5
- chiSquared < 100,000
- •helix.d0 < 5 mm, helix.z0 < 5 cm
- •Pion tracks are fitted to the hypothetical pion dE/dx within 3.0 σ

D_s^{*+} mass peak

•Reconstruct D_s*+ mass peak from decay into D_s+ and electrons. $D_S^{*+} \rightarrow D_S^+ e^+ e^-$ •Electron tracks must pass relaxed track quality cuts

- •10 MeV < Track Momentum < 2.0
- •GeVchiSquared < 100,000
- •helix.d0 < 5 mm, helix.z0 < 5 cm
- •Electron tracks are fitted to the hypothetical electron dE/dx within 3.0 σ

Kinematic Quantities to Plot

$$\Delta E = E(K^{+}K^{-}\pi^{+}e^{+}e^{-}) - E(D_{S}^{*+}beam)$$

$$\Delta m = M(K^{+}K^{-}\pi^{+}e^{+}e^{-}) - M(K^{+}K^{-}\pi^{+})$$

$$m_{BC} = \int E^{2}(D_{S}^{*+}beam) - P^{2}(K^{+}K^{-}\pi^{+}e^{+}e^{-})$$