

Wakes and Energy Spread During Energy Recovery

M. Billing

Aug. 2, 2007

Outline

- Energy Loss vs. Energy Spread
- Wake Fields from ERL Vacuum Components
- Possible Method for Reducing Energy Spread
- Conclusions

First Consideration for Beam

- Beam's electromagnetic fields interact with its vacuum chamber in two ways - The first is
- Non-resonant <u>Power Loss</u> with 1.3 GHz bunch freq. & charge of 77 pC $\begin{cases} k(\sigma_z) \\ parameter \end{cases}$

$$P_{\text{loss}} = 7.7 \text{ W} \left\{ \frac{R(O_z)}{1 \text{ V/pC}} \right\}$$
28 KW for CESR)

- Not a serious problem, <u>BUT</u> very sensitive to resonantly excited trapped modes (could be enhanced 100-500x)
- Assume 200 W dissipation limit for most vacuum structures with water cooling:

$$\max\{k(\sigma_z)\} = 26 \text{ V/pC}$$

Second Consideration for Beam

Second interaction is thru the Induced Wake Voltage

 Voltage for particle following charge, q depends on its longitudinal position, s, within the bunch due to the effect of all vacuum chamber components in ERL

$$V_{\parallel}(s)\Big|_{\text{entire ERL}} = q W_{\parallel}(s)\Big|_{\text{entire ERL}}$$

- Increases the energy spread, $\Delta_{\rm E}$, of the bunch
- Limitation:
 - At high energy, the energy spread is usually not serious,
 BUT as the beam decelerates the effect is magnified x 500
 - Maximum acceptable beam energy spread at the dump places a limit on the maximum wake field, i.e.

$$\max \left\{ eV_{\parallel}(s) \Big|_{entire ERL} \right\} \le \kappa \max \left\{ \Delta_{E} \Big|_{dump} \right\} \quad \text{where } 0 \le \kappa \le 1$$

(e.g. $\kappa \sim 0.5$)

Peak Wake Function Limit

- Estimating maximum energy spread at the dump
 - Decelerated beam at the Dump:
 - Average Beam Energy at the Dump: E = 10 MeV
 - Acceptable Maximum Energy Spread at the Dump: $\Delta E = 5 \text{ MeV}$
- Cast limit in terms of wake field W_{II}
- Limit depends on operating charge:

– Mode A operation (77 pC & σ_z = 0.6 mm):

$$\max \left\{ W_{\parallel}(s) \Big|_{entire ERL} \right\} = \frac{1}{q} \max \left\{ eV_{\parallel}(s) \Big|_{entire ERL} \right\}$$
$$\leq 0.5 \frac{1}{q} \max \left\{ \Delta E \Big|_{dump} \right\} \approx (0.5) \frac{5 \text{ MeV}}{77 \text{pC}}$$
$$\approx 32 \text{ kV/pC}$$

Effects of Wake Function

Self-Wake

- Direct interaction of the bunch with vacuum chamber
 - Strongest within the bunch since all of the different modes of the structure are excited "in phase"

• Wake from preceding bunches

- Non-resonant
 - Generally much smaller than selfwake since different modes destructively interfere with each other

Resonant

- Occurs when a mode in structure is a harmonic of the bunch repetition frequency, 1/T_{bb}
- Amplitude grows over duration of one filling time for this mode

 Could enhance W_{II} by as much as 100-500x
- I will ignore the wake from preceding bunches

Wake Fields from ERL Vacuum Components

- Estimate effects for the following structures
 - Choose the larger impact discontinuities
 - Accelerator Cavities & HOM Loads Expansion Joints
 - **BPM's**
 - Flanges
 - **Clearing electrodes**

Tapered Transitions Gate Valves Resistive Wall Wake Roughness Wake Undulator Chambers

- Gaussian Shaped Bunch: σ_z = 0.6 mm
- Estimates made using ABCI for cylindrically symmetric 2-D geometries
 - Two exceptions (one of the Expansion Joints & the Clearing Electrode were calculated in 3-D with MAFIA)
 - Third exception (RF HOM Loads were calculated with NOVO: 2-D)

- RF Cavity Higher Mode Loads
 - Geometric (ignoring ferrite properties) (2 pipe radii)
 - (78 mm) Min, Max { W_{\parallel} } = -2.22, 0.0 V/pC k = 1.60 V/pC
 - (106 mm) Min, Max { W_{\parallel} } = -1.24, 0.0 V/pC k = 0.89 V/pC
 - Quantity 78 mm & 106 mm I.D. Pipes (each type:200 x 2)

- Expansion Joints (Telescoping) (2 gaps)
 - (1 mm) Min, Max { W_{\parallel} } = -1.43, 0.0 V/pC k = 1.00 V/pC
 - (9 mm) Min, Max { W_{\parallel} } = -2.09, 0.29 V/pC k = 1.48 V/pC
 - Quantity = 356

- Beam Position Monitor (Button)
 - Min, Max {W_{||}} = -0.52, 0.0 V/pC k = 0.36 V/pC
 - Gap around button = 1 mm
 - Quantity = 664

Power per unit = 2.8 W

- **Beam Position Monitor (Stripline)** •
 - Min, Max {W_{||}} = -0.56, 0.0 V/pC k = 0.38 V/pC
 - Gap = 2 mm
 - Quantity = 20

Power per unit = 2.9 W

2.4% of Limit

- Clearing Electrode
 - Min, Max {W_{II}} = -1.2, 0.9 V/pC k = 0.25 V/pC
 - Quantity = 150

Power per unit = 1.9 W

Yi Xie

Undulator Chamber Tapers

Power per unit = 160 W

- Actual chamber is rectangular 5 x 40 mm
- Model with 25 mm Long Taper to 3 mm Radius Pipe
- Min, Max {W_{||} } = -56.6, 0.0 V/pC k = 32.3 V/pC
- Quantity = 18

Gate Valves

Power per unit = <mark>48</mark> W

- Min, Max {W_{||}} = -10.4, 10.1 V/pC k = 6.18 V/pC
- Tapered out to a much larger radius than needed
- Quantity = 68

- Resistive Wall of Vacuum Chamber per meter
 - Stainless steel
 - Radius: 12.7 mm (normal beam pipe)
 - Radius: 3 mm (undulator chambers)
 - (12.7 mm) Min, Max { W_{\parallel} } = -1.6, 0.0 V/pC k = 1.1 V/pC

Length

2.5 km

144 m

Power per m =

8.5 W (12.7 mm)

37 W (3 mm)

- (3.0 mm) Min, Max { W_{\parallel} } = -6.8, 0.0 V/pC k = 4.8 V/pC

- Roughness of Vacuum Chamber Wall (per meter)
 - Stainless steel Roughness Length
 - Radius: 12.7 mm (normal beam pipe) $3 \mu m$ 2.5 km
 - Radius: 3 mm (undulator chambers) $0.5 \,\mu\text{m}$ 144 m
 - Correlation Length = Roughness
 - $-(12.7 \text{ mm}) \text{ Min, Max} \{W_{\parallel}\} = -5.6, 0.2 \text{ V/pC} \text{ k} = 3.5 \text{ V/pC}$
 - (3.0 mm) Min, Max {W_{||}} = -25, 0.8 V/pC k = 17.5 V/pC

Estimated Total Self-Wake

Peak Wake

 $\max \left\{ W_{\parallel}(t) \right|_{ERL} \right\} = 33 \text{ kV/pC}$

Same as 32 kV/pC Limit

Component	Number	Total -Wake (KV/pC)	Total +Wake (KV/pC)	Total k (KV/pC)	
7 Cell RF Cavity	800	-11.32	0	5.81	
HOM Load (78 mm)	400	-0.89	0	0.64	
HOM Load (106 mm)	400	-0.50	0	0.36	
Expansion Joint	356	-0.74	0.10	0.53	
BPM (Button)	664	-0.35	0	0.24	
BPM (Stripline)	20	-0.01	0	0.01	
Flange Joint	356	-0.90	0	0.64	Total k
Clearing Electrode	150	-0.18	0.14	0.04	IUIAIK
Gate Valve	68	-0.71	0.69	0.42	= 23.8KV/pC
Resistive Wall (12.7 mm)	2500	-4.00	0	2.75	· · · · · · · · · · · · · · · · · · ·
Roughness (12.7 mm)	2500	-14.00	0.50	8.75	
Undulator Taper (3 mm)	18	-0.61	0.37	0.36	Total HOM Power
Resistive Wall (3 mm)	144	-0.98	0	0.69	
Roughness (3 mm)	144	-3.60	0.12	2.52	-103 KVV

Possible Methods for Reducing Energy Spread from Wakes

- Correct Slope of Wake Field
 - Run RF Off Crest for slope compensation
- Result for ΔE (Between +/- 3.3 σ_z)
 - Present Example
 - Reduces 2.6 MeV to 2.2 MeV
 - Not much help
- Other Possibilities
 - Reduce Charge/Bunch
 - Increase Dump Energy
 - Lengthen Bunch
 - Larger Beam Pipe

Conclusions

- Higher Order Mode Loss not a serious problem
 Unless there are resonant trapped modes
- Wake Fields from Large Fraction of Components
 - Max{W_{II}} ~ 100% of proposed limit
 - (Limit is $\Delta E= 2.5$ MeV for 10 MeV Beam at the Dump)

(RF Cavity & Roughness Wakes dominate)

- Should consider compensation methods
- Have only included self-wakes, ignoring
 - Wakes from preceding bunches
 - Wakes from any resonant trapped modes
- Future considerations
 - Remaining discontinuities, e.g. Vacuum pump ports, X-ray crotches
 - Effect on longitudinal dynamics, esp. bunch compression & higher bunch charge options