CBPM sampling clock jitter

Antoine

CESR instrumentation meeting – Nov 8th, 2024

CBPM zero-crossing

Collected peak and zero-crossing TBT data. See instr. elog 2374.

Message ID: 2374 Entry time: 2024-11-05, 15:22, Tuesday	
Author:	Antoine T Chapelain
Subject:	Zero-crossing data collection
Category:	
Instrument:	CESR BPM
Sub-System:	CBPM_II
Shift Key:	20240105_1900

Good data for 11W to 48W:

- peak TBT: 474709/474710
- zero-crossing (+41 units) TBT: 474711/474712

South Arc BPMs in West server did not cooperate at all and we even bricked X4B. Zero-crossing is a risky business.

CBPM zero-crossing

Zero-crossing data allows to measure the sampling clock jitter:

M.G. Billing et al 2017 JINST 12 T09005

signal shown in Fig. 4. At the zero-crossing, the relative amplitude error scales proportionally with the timing jitter δt :

$$\delta b_{n, \text{timing}}(t) \cong \frac{\partial b_n}{\partial t}(t) \delta t$$

= $-2\pi f \hat{b}_n \sin\{2\pi f(t + \Delta t_n)\} \delta t$
 $\cong -2\pi f \hat{b}_n \delta t$ (2.10)

where the waveform is taken to be zero at the location of the greatest slope (i.e., no DC offset).

Amplitude ± SD at zero-crossing

Amplitude ± SD at peak

Sampling clock jitter

Jitter v. peak amplitude

Jitter v. zero-crossing amplitude

Jitter v. zero-crossing SD

Jitter v. total delay

Looking for "jitter" correlation

Look at zero-crossing time series to extract intra- and inter-module correlations. Each time series is average subtracted for easy comparison. Two examples:

Intra-module correlation

Intra-module correlation from scatter plots, e.g.:

Intra-module Pearson correlation

34W: Pearson not capturing slope

Pearson and Concordance correlations

The Pearson correlation measures the linear relationship between two variables. It cares about the spread (precision) but not the slope.

Pearson and Concordance correlations

The Pearson correlation measures the linear relationship between two variables. It cares about the spread (precision) but not the slope.

The Concordance correlation care about both: it measures how well pairs of observations fall on the 45-degree line through the origin y=x. It assesses both the accuracy (how close the data are to the line) and precision (how close the data are to each other).

Concordance \approx Pearson + y=x slope comparison

34W again

Intra-module Concordance correlation

Inter-module correlation

Inter-module correlation from scatter plots, e.g.:

Inter-module Pearson correlation

Inter-module Concordance correlation

Correlation takeaway

Channel-to-channel and module-to-module correlations are very strong

One source driving both?

- Iongitudinal beam motion (arrival time at detector)?
- other beam motion (but not transverse)?
- common clock jitter?
- something else?

Extras