

CBPM resolution measurement

Antoine

CBPM meeting November 13, 2019 Machine study:

signal-to-noise ratio

Toy MC Recap'

Using the measured noise for each of the 12 buttons and toy MC simulations, the vertical resolution of the three CBPMs scales with the signal amplitude as:

	8,192 ADU	16,384 ADU	32,768 ADU
12W2	10.88	5.43	2.72
12W3	11.02	5.51	2.75
12W	10.90	5.47	2.73

resolution unit = μ m

The resolution is expect to improve with higher signal-to-noise ratio

Machine study

Machine study on November 13, 2019: instrumentation elog 1835

Collected triplet CBPM peak-data for different beam intensities:

```
1.1-- Time align the triplet CBPMs (12W2, 12W3 and 12W) with 0.75 mA

1.2-- Collect 131,072 turns with the 60 Hz sync trigger for 0.75 mA

data file: RD-063215.dat

2-- Dump the beam and march up-ward intensity-wise to collect CBPMs data with different signal amplitudes

2.1-- collect 131,072 turns with the 60 Hz sync trigger for 0.2? mA

data file: RD-063216.dat

2.2-- collect 131,072 turns with the 60 Hz sync trigger for 0.4? mA

data file: RD-063217.dat

2.3-- collect 131,072 turns with the 60 Hz sync trigger for 0.62 mA

data file: RD-063218.dat

2.4-- collect 131,072 turns with the 60 Hz sync trigger for 0.81 mA

data file: RD-063219.dat

2.5-- collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA

data file: RD-063220.dat
```

Let's look at the CBPM individual vertical resolutions (small/negligible beam motion folded in) and the triplet resolution

Raw readings, 12W2 button 0

12W2 vertical centroid standard deviation (≅ resolution)

12W3 vertical centroid standard deviation (≅ resolution)

12W vertical centroid standard deviation (≅ resolution)

Summary table

'Combined' is the combined resolution of the three individual resolutions 'Triplet' is the resolution from performing the triplet resolution measurement

		Resolution [micron]							
		12W2	12W3	12W	Combined	Triplet			
	0.2	16.37	18.3	16.16	16.97	17.5			
0	0.4	9.8	11.85	10.12	10.63	11.05			
Current [mA]	0.6	7.57	10.24	8.38	8.8	9.54			
נייירן	0.8	6.5	9.39	8.27	8.14	8.85			
	0.9	6.38	9.36	8.77	8.27	8.89			

'Triplet' ≠ 'Combined'. From toy MC simulations, 'Triplet' and 'Combined' are:

x same if the three CBPMs have same resolutions

x different if the three CBPMs have different resolution

new finding

<u>Culprit</u>: triplet fit assuming same uncertainty for the three data points? Constrain uncertainties using the measured individual ones?

Machine study timing study

Machine study

Machine study on November 13, 2019: instrumentation elog 1835

Collected triplet CBPM peak-data for different timing offset:

```
3-- Changing the timing offset of all the 12 buttons
3.1-- no change, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06321.dat
3.2-- +10ps, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06322.dat
3.3-- +20ps, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06323.dat
3.4-- +30ps, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06324.dat
3.5-- +40ps, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06325.dat
3.6-- back to no change, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06326.dat
3.7-- -10ps, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06327.dat
3.8-- -20ps, collect 131,072 turns with the 60 Hz sync trigger for 0.92 mA
data file: RD-06328.dat
```

Let's look at the CBPM individual vertical resolutions (small/negligible beam motion folded in) and the triplet resolution

12W2 vertical centroid standard deviation (≅ resolution)

12W2 vertical centroid standard deviation (≅ resolution)

12W3 vertical centroid standard deviation (≅ resolution)

12W vertical centroid standard deviation (≅ resolution)

1 micron single-shot resolution?

1 micron single-shot resolution?

It does not seem realistic:

i													
Design		Noise [ADU]	ed amplitude	l	Un-correlated timing jitter [ps]			Timing offset [ps]				Vertical	Vertical
				inner top	inner bottom	outter bottom	outter top	inner top	inner bottom	outter bottom	outter top	precision [micron]	accuracy [micron]
Current	Ideal	9	32,768	10	10	10	10	0	0	0	0	8.5	0
	Best	9	24,576	10	10	10	10	0	0	0	0	8.9	0
	Realistic	9	16,384	10	10	10	10	10	0	0	10	12.7	5.7
	Realistic	9	16,384	10	10	10	10	10	10	10	10	15	0
	Realistic	9	8,192	10	10	10	10	10	10	10	10	17.6	0
	1	9	32,768	1	1	1	1	1	1	1	1	2.7	0
Future	2	5	32,768	1	1	1	1	1	1	1	1	1.5	0
	3	5	65536	1	1	1	1	1	1	1	1	0.8	0
	4	9	32,768	5	5	5	5	5	5	5	5	4.4	0
	5	9	32,768	5	5	5	5	1	1	1	1	3.4	0
	6	9	32,768	10	10	10	10	1	1	1	1	8.6	0
				7	1			4		1		2	

Averaging turns might be the only way to get a chance to reach 1 micron precision. Still working on Data and Toy MC to understand the averaging. So far, not so clear as to how/why it might (or not) work.

Additional materials

CBPM convention

Horizontal and vertical centroids

$$y = k_y \frac{(b_0 + b_3) - (b_1 + b_2)}{b_0 + b_3 + b_1 + b_2}, \quad k_y = 19.8 \text{ mm}$$

$$x = k_x \frac{(b_2 + b_3) - (b_0 + b_1)}{b_2 + b_3 + b_0 + b_1}, \quad k_x = 25.9 \text{ mm}$$