In situ fitting of instrumental uncertainties

Antoine

CESR acc. group meeting: April 26, 2023

Signal and its uncertainty

Measure button signal amplitude for many, many turns and build distribution

Assumed so far that the per-bin uncertainty followed Poisson: \sqrt{n}

Antoine Chapelain

In situ error measurement

Poisson vs Binomial

In probability theory and statistics, the **Poisson distribution** is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event.^[1] It is named after French mathematician Siméon Denis Poisson (/'pwa:spn/;

In probability theory and statistics, the **binomial distribution** with parameters *n* and *p* is the discrete probability distribution of the number of successes in a sequence of *n* independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability *p*) or failure (with probability q = 1 - p). A single success/failure experiment is also

Key differences:

Poisson statistics is for "self-occuring" event, Binomial is for triggered events

Poisson variance = \mathbf{n} ,

Binomial variance = **npq**

Multinomial

Each bin in our distribution represent a Binomial statistics, thus the entire distribution follow a multinomial statistics

Let *k* be a fixed finite number. Mathematically, we have *k* possible mutually exclusive outcomes, with corresponding probabilities p_1 , ..., p_k , and *n* independent trials. Since the *k* outcomes are mutually exclusive and one must occur we have $p_i \ge 0$ for i = 1, ..., k and $\sum_{i=1}^{k} p_i = 1$. Then if the random variables X_i indicate the number of times outcome number *i* is observed over the *n* trials, the vector $X = (X_1, ..., X_k)$ follows a multinomial distribution with parameters *n* and **p**, where **p** = $(p_1, ..., p_k)$. While the trials are independent, their outcomes X_i are dependent because they must be summed to n.

In simple terms:

× the probability p_i in a given bin *i* is its number of entries divided by the total number of entries in the distribution

x Variance = **np**_i**q**

Poisson vs Multinomial

Poisson \approx Multinomial

Turns out that yes Poisson is approximating well the Multinomial statistics

The Poisson distribution can be derived as a limiting case to the **binomial distribution** as the number of trials goes to infinity and the expected number of successes remains fixed — see law of rare events below. Therefore, it can be used as an approximation of the **binomial** distribution if *n* is sufficiently large and *p* is sufficiently small. The Poisson distribution is a good approximation of the **binomial** distribution if *n* is at least 20 and *p* is smaller than or equal to 0.05, and an excellent approximation if $n \ge 100$ and $n p \le 10$.^[28]

 $F_{ ext{Binomial}}(k;n,p)pprox F_{ ext{Poisson}}(k;\lambda=np)$

Additional materials