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Signal and its uncertainty

Measure button signal amplitude for many, many turns and build distribution
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Assumed so far that the per-bin uncertainty followed Poisson: vn
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Poisson vs Binomial

In probability theory and statistics, the Poisson distribution is a discrete probability distribution
that expresses the probability of a given number of events occurring in a fixed interval of time or
space if these events occur with a known constant mean rate and independently of the time since

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete
probability distribution of the number of successes in a sequence of n independent experiments,
each asking a yes—no question, and each with its own Boolean-valued outcome: success (with
probability p) or failure (with probability g = 1 — p). A single success/failure experiment is also

Key differences:

Poisson statistics is for “self-occuring” event, Binomial is for triggered events

Poisson variance = n, Binomial variance = npq
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Multinomial

Each bin in our distribution represent a Binomial statistics, thus the entire
distribution follow a multinomial statistics

Let k be a fixed finite number. Mathematically, we have k possible mutually exclusive outcomes, with corresponding probabilities p4, ...,
Pk, and n independent trials. Since the k outcomes are mutually exclusive and one must occur we have p;=z0fori=1, ..., kand

k
Z p; = 1. Then if the random variables X; indicate the number of times outcome number i is observed over the n trials, the vector

=1
X =(Xj, ..., Xk) follows a multinomial distribution with parameters n and p, where p = (p4, ..., Px)- While the trials are independent, their

outcomes X; are dependent because they must be summed to n.

In simple terms:
X the probability p; in a given bin i is its number of entries divided by the total
number of entries in the distribution

X Variance = npiq
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Poisson vs Multinomial

» Poisson
* Multinomial
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Poisson = Multinomial

Turns out that yes Poisson is approximating well the Multinomial statistics

The Poisson distribution can be derived as a limiting case to the binomial distribution as the number of trials goes to infinity and the expected number of
successes remains fixed — see law of rare events below. Therefore, it can be used as an approximation of the binomial distribution if n is sufficiently
large and p is sufficiently small. The Poisson distribution is a good approximation of the binomial distribution if r is at least 20 and p is smaller than or

equal to 0.05, and an excellent approximation if # 2 100 and n p < 10.1?°]

FBinomia.l (k; n?p) ~ FPDisson (k; A= ﬂp)
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Additional materials
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