CBPM single-turn precision as a function of timing performance

Antoine

June 13th, 2024

Monte Carlo simulation

Procedure:

x independently draw random x and y positions within ±5 mm *x* extract button amplitude from Poisson map given x/y positions *x* scale amplitudes with reference:

> amplitude at (x, y) = (0, 0) uniformly random in [15000, 20000] ADC counts

x draw random timing offset from the peak uniformly in [0, 10] ps

x keep beam position fixed and simulate many turns (1,000⁺). For each turn:

- randomly draw sampling clock jitter from Gaussian with 10 ps width
- scale button amplitudes with timing jitter and offset
- randomly draw electronics noise from Gaussian with 9 ADC counts width
- > scale button amplitude with electronics noise

 $\textbf{\textit{x}}$ reconstruct beam positions \rightarrow extract precision

Repeat procedure 100 times and quote precision as the distribution mean

For the current setup:

x noise RMS ~9 ADC count*x* time step size of 10 ps

x sampling clock jitter ~10 ps

	North Arc	South Arc
σ _x [μm]	13.8	5.3
σ _y [μm]	10.4	5.4

Change **noise RMS**:

 $\textbf{\textit{x}}$ noise RMS $\textbf{9} \rightarrow \textbf{3}$ ADC count

x time step size of 10 ps

x sampling clock jitter 10 ps

			North Arc	South Arc
inal	\int	σ _x [µm]	13.8	5.3
mon		σ _y [µm]	10.4	5.4
		σ _x [µm]	12.1	4.8
		σ _y [µm]	9.1	4.8

Change **noise RMS + time step size**:

 $\textbf{\textit{x}}$ noise RMS $\textbf{9} \rightarrow \textbf{3}$ ADC count

- $\textbf{\textit{x}}$ time step size of $\textbf{10} \rightarrow \textbf{5} \text{ ps}$
- *x* sampling clock jitter 10 ps

			North Arc	South Arc
inal	\int	σ _x [µm]	13.8	5.3
mon		σ _y [µm]	10.4	5.4
	-	σ _x [µm]	10.2	4.0
		σ _y [µm]	7.6	4.0

Change **noise RMS + time step size + jitter**:

 $\textbf{\textit{x}}$ noise RMS $\textbf{9} \rightarrow \textbf{3}$ ADC count

- $\textbf{\textit{x}}$ time step size of $\textbf{10} \rightarrow \textbf{5} \text{ ps}$
- $\textbf{\textit{x}}$ sampling clock jitter $\textbf{10} \rightarrow \textbf{5} \text{ ps}$

			North Arc	South Arc
inal	\int	σ _x [µm]	13.8	5.3
nom		σ _y [µm]	10.4	5.4
		σ _x [µm]	3.8	1.5
		σ _y [µm]	2.8	1.5

Change **noise RMS + time step size + jitter**:

<code><code><code></code> noise RMS $9 \rightarrow 3$ ADC count</code></code>

- **x** time step size of $10 \rightarrow 2$ ps
- $\textbf{\textit{x}}$ sampling clock jitter $\textbf{10} \rightarrow \textbf{2} \text{ ps}$

			North Arc	South Arc
inal	\int	σ _x [µm]	13.8	5.3
mon		σ _y [µm]	10.4	5.4
	-	σ _x [µm]	2.3	0.9
		σ _y [µm]	1.8	0.9

Extras

Discussed in meeting

Discussion

gfdsgdf