- CBPM gain calibration -4 waves method

Antoine, Vardan

CESR acc. group meeting - Sept 4th, 2024

CBPM 4-wave gain calibration

Goal

- speed-up significantly data taking for gain calibration
- make full ring gain calibration a routine task

How

- introduce ring-wide wave to bump many locations at once
- 4 π /4 out-of-phase waves is enough for calibrating all locations

Machine study R&D

See instr. elog 2303

N	Message ID: 2303 Entry time: 2024-06-11, 18:15, Tuesday						
A	Author:	Antoine T Chapelain, Vardan Khachatryan					
S	Subject:	CBPM gain calibration R&D					
C	Category:	Repair/Maintenance					
I	nstrument:	CESR BPM					
S	Sub-System:	CBPM_II					
S	Shift Key:	20240611_1800					

Managed to collect 3 waves out of 4

Measured gains

Exclude locations with only 3 working buttons

Comparison with reference gains

Reference gains = gains measured over the past couple years via local bumping

Comparison with reference gains

Objective function is minimized during gain reconstruction

Large objective function results

34W and X3D have largest objective functions

Comparison with reference gains

Keep objective function < **1e-4**

Behind the scene

Some reference gains have been re-analyzed using reference data and different results were found (probably some analysis mistake back then):

- X1A \rightarrow discrepancy with wave analysis resolved
- $44W \rightarrow$ discrepancy remains

Some reference gains were not propagated to BPM_INST_params:

■ 47W, X3B → discrepancy resolved

Remaining discrepancies

5 locations show unexplained discrepancies:

		cbpm	obj fun	g3	g2	g4	orbit_index
node_i	ndex						
1		X5C	4.100000e-06	-0.031050	-0.062230	0.015646	12
3		X6A	2.510000e-05	0.044764	0.039568	0.056990	17
44		44W	6.530000e-07	-0.083540	0.049200	-0.010260	62
87		12E	5.720000e-07	-0.043390	0.069030	-0.005250	114
108		X4D	6.470000e-06	-0.016570	0.078510	0.044766	6

Old reference gains were all re-analyzed but results did not change

More digging needed to understand what's going on

3-wave gain calibration is **a success!**

Let's make the **4-wave method** the standard calibration procedure:

- will allow calibrating 90⁺% of all CBPMs (local bumping for left over)
- need new code to automatically update BPM_INST_params
- two MS shifts reserved during start-up

Going forward, we could **routinely** gain calibrate all the CBPMs

Extras