
CBPM3 Status
MAY 17TH 2024

Overview
• System Level Summary

• Current Implementation

• Short Term Goals

• Long Term Goals

• Latest News

System Level Summary

Server
Request

CBPM I/O
Kernel

Module
Hardware

Access
Sampling

ZeroMQ
C/Python,
file access

C,
memory
access

Verilog

CBPM2, For Comparison

CBIC RTEMS DSP
FPGA

Backplane
Sampling

Sockets
C,

memory
access

C,
memory
access

Verilog

Digression – Taking Data

CBIC RTEMS DSP
FPGA

Backplane
Sampling

• User Requests
data, including
metadata –
species, bunch,
of turns, etc.

• CBIC packs it up
and sends it to
the BPMs

• RTEMS handles
the socket
connection and
hands off the
metadata

• DSP sets up the
parameters for
sampling from
the metadata

• When ready,
enables
sampling

• Backplane
synchronizes
between
multiple
triggers before
sending an
enable

• AFE’s
synchronize on
backplane
enable and
turnmarker,
take data per
params

Digression – Taking Data

CBIC RTEMS DSP
FPGA

Backplane
Sampling

• Collects data
from all bpms
before
formatting as
needed, returns
to user

• Reads DSP
buffers and
packs them
before sending
out over socket
connection

• Reads out data
from AFE’s

• Processes if
necessary

• Enable de-
asserted

• Done with
collection

Progress

Server
Request

CBPM I/O
Kernel

Module
Hardware

Access
Sampling

ZeroMQ
C/Python,
file access

C,
memory
access

Verilog

Current Implementation
• User process reads/writes using IOCTL
and structs

• Kernel Module handles memory access

• Helper functions for debugging, logging

• Set up and trigger for data capture

• Return data when requested

Test Program - cbpmio.c Output

Bonus Points – See the problem?

Digression – I/O Options
• Currently using a quasi-object oriented approach
• Struct defined with all registers, workflow is make-get-change-set

• Common for mem mapped embedded stuff (timers, SPI configs, peripherals)

• Issues
• AFE register map is a little weird

• Timing board does not support reads so we have a virtual register for it

• LOTS of transactions – bus is busy

• Other Options
• Spent time trying to get arbitrary buffers of transactions working, eventually reverted

• More custom ioctl functions for specific cases (in progress)

Short Term Goals
• Sweep mode ioctl
• Will handle the timing steps automatically

• Need to figure out the data handoff a little more

• Integrate generated headers for structs
• Currently using rough structs put together for basic testing

• Get some believable data

Long Term Goals
• Prove my phase data alignment code works

• Fast sampling ioctl
• See how quickly data can be pulled

• Benchmark current arch, possibly plan changes to FPGA

• Get the Python interface polished
• Ran into issues with how the buffers were packed, was easier to byte bang in C

• ZeroMQ interface, Time in code, phase measurement math, process arbitration in kernel
module, self test code, error handling, logging, MAC address overlap, offline mode, channel
comparisons, calibration options, status and heartbeat monitoring, FPGA interlocking, so on.

Latest News
• Odd register behavior prompting a second prototype box

• Not as problematic but not quite right

• Hardware issue? FPGA issue? Not a kernel mod issue, same result using other means

• Second prototype box mostly worked smoothly, a few oddities

