CBPM3 Status

JUNE 7th 2024

Overview

- Update on Register Access
 - Problem discussion
 - Current solution
- Hardware Changes
- Next Target

	 Register Access Issue Some registers not reading correctly Replicated on a second prototype, but slightly different Hardware debugging showed transaction info was fine, all the way to the processor 													AFE Registers Du Register control dcs_control fpga_id ch0_gain_control adc_mem_first_1 adc_mem_first_2 turns_count_1 turns_count_2 next_mem_adr_1 next_mem_adr_2 temp AFE Registers Du Register control dcs_control fpga_id ch0_gain_contro adc_mem_first_1 adc_mem_first_2 turns_count_1	ump: Value 2 0 2f 0 100 0 0 0 0 0 0 0 0 0 0 0 0
Signal Wire ID Wire Status Clock1 CLK1 L Clock2 CLK2 L Data[31.0] Data8 D8 L Data9 D9 L Data10 D10 L Data11 D11 L Data12 D12 L Data13 ts L Data14 D14 L	Edge A Curs 10 10 10 10 10 10 10 10 10 10 10 10 10	Cursor A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4000n	-lus -90	Ons -800ns - 000000000000000000000000000000000	-700ns E	-600hs -500	hs -400ns	-300ns -200ns	-100ns	T+1.01us +10	0ns +200n	ns +300n	+400ns +500ns	+600ns +700ns
Data15 D15 L Data16 D16 L Data17 D17 L Data18 D18 L Data19 D19 L Data19 D19 L Data20 D20 L Data21 D21 L Data23 D23 L +Data[7.0] - - NewGroup11 L - Data24 PM -) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2h)(87h			3h	3n						2		
Data25 D25 H Data26 D26 H Data27 D27 L Data28 D28 L Data29 D29 L Data30 D30 L Data31 D31 H		1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													

ARM Memory Standard

MSByte	MSByte-1	LSByte+1	LSByte									
Word at address A												
Halfword at a	ddress (A+2)	Halfword at	t address A									
Byte at address (A+3)	Byte at address (A+2)	Byte at address (A+1)	Byte at address A									

Figure A3-3 Little-endian memory system

ARMv7-M Architecture Reference Manual, pg 67

ARM Memory VS BPM Memory

ARM:	BPM:
Any given address -> 8 bits	Any given address -> 16 bits
Prefers 32 bit data	Prefers 16 bit data

We handle this by dropping the LSB of the ARM address when translating to BPM

0x40400006 (AFE0 Gain 0) drop upper bits -> 0b0000_0000_0110 shift >> 0b0000_0000_0011 which matches ->

Register: Offset:	CH0_GAIN 3	1						
Bit	15	14	13	12	11	10	9	8
Description	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	Not Used	CH0 VG_ENA
Default	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Description	CH0 GAIN	CH0 GAIN	CH0 GAIN	CH0 GAIN	CH0 GAIN	CH0 GAIN	CH0 GAIN	CH0 GAIN
Description	0	0	0	0	0	0	0	0

ARM Non-word Accesses

• ARM has instructions for smaller accesses

	26	int	main()
	27	{	
	28		<pre>uint16_t * afe0_gain0 = (uint16_t *)0x40400006;</pre>
	29		<pre>uint16_t * afe0_gain1 = (uint16_t *)0x40400008;</pre>
	30		
	31		init_platform();
	32		<pre>print("peripheral mem test\n\r");</pre>
	33		
	34		int i = 0;
	35		<pre>uint16_t afe0_gain0_val = 0xFFFF;</pre>
	36		<pre>uint16_t afe0_gain1_val = 0xFFFF;</pre>
	37		while (i < 10) 🛛
D	38		afe0_gain0_val = *afe0_gain0;
	39		afe0_gain1_val = *afe0_gain1;
	40		<pre>printf("AFE0 gain 0: %x\n\r", afe0_gain0_val);</pre>
	41		<pre>printf("AFE0 gain 1: %x\n\r", afe0_gain1_val);</pre>
	42		<pre>sleep(1);</pre>
	43		i++;
	44		D
	45		<pre>print("peripheral mem test finished\n\r");</pre>
	46		<pre>cleanup_platform();</pre>
	47		return 0;
	48	}	

bl	+236		addr=0x00100618:	init_platform	
movw	r0, #443	508	3		
movt	r0, #16				
bl	+268		addr=0x00100644:	print	
mov	r3, #0				
str	r3, [r11	ι,	#-8]		
m∨n	r3, #0				
strh	r3, [r11	L,	#-18]		
m∨n	r3, #0				
strh	r3, [r11	ι,	#-20]		
b	+80		addr=0x001005a4:	main + 0x000000	0a4
ldr	r3, [r11		#-12]		
ldrh	r3, [r3]]			
strh	r3, [r11	ι,	#-18]		
ldr	r3, [r11	ι,	#-16]		
ldrh	r3, [r3]]			
strh	r3, [r11	ι,	#-20]		
ldrh	r3, [r11	ι,	#-18]		
mov	r1, r3				
movw	r0, #443	332	1		
movt	r0, #16				
blx	+3064		addr=0x00101178:	printf	
ldrh	r3, [r11	ι,	#-20]		
mov	r1, r3				
movw	r0, #443	352	2		
movt	r0, #16				
blx	+3044		addr=0x00101178:	printf	
mov	r0, #1				
bl	+800		addr=0x001008bc:	sleep	

ARM LDRH

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a halfword from memory, zeroextends it to form a 32-bit word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see *Memory accesses*.

Note the "loads halfword from memory" is ambiguous

In reality* it's still expecting 32 bit data, which is then shifted into position and zero-extended

https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Instruction-Details/Alphabetical-list-of-instructions/LDRH--register-?lang=en

AXI Unaligned Access

ILA Status: Idle												553								
Name	Value	505	510	515	520	525	530	535	540	545	550	555	560	565	570	575	580	585	590	595
∨ 👅 slot_0 : smartconAXI : Interface	Active									Activ	e									
> 📕 slot_0 : smartcTransactions C	Read (ID:0 Addr:0)									Read (ID	(O Addr)))x40400006)								
∨ 📕 slot_0 : smartcXI : AR Channe	Addr Cmd									Addr C	ìmd							<u> </u>		
🐻 slot_0 : smartAXI : ARVALIC	1																			
🐻 slot_0 : smartAXI : ARREAD	0				8										6		8		2	
> 😽 slot_0 : smarAXI : ARADDF	40400006	40400008										40400006								
> 😽 slot_0 : smarAXI : ARPROT	Data Secure Privile									Data Secu	ure Privi	leged								
> 😽 slot_0 : smarAXI : AR_CNT	0									0								X	1 χ	0
∨ 👅 slot_0 : smartcXI : R Channel	-							_												
🐻 slot_0 : smart2_AXI : RVAL	0					_														
🐻 slot_0 : smarAXI : RREAD\	0						6		2						0		0			
> 😽 slot_0 : smart2_AXI : RDAT	000000ff	000000	ff						oooooff					X			0000001f			
> 😽 slot_0 : smart2_AXI : RRES	OKAY										OKAY									
> 😽 slot_0 : smart2_AXI : R_CN	0									0								X	1	0
> 🔚 slot_0 : smartcXI : AW Channe	No Write Addr Cmo							-		No Writ	te Addr (mds								
> 📕 slot_0 : smartcXI : W Channel	No Write Data Bea					<u>.</u>				No Writ	e Data B	ats								
> 📕 slot_0 : smartcXI : B Channel	No Write Response						49			No Writ	e Respor	ses	49		43		52			
							2						3							

External Peripheral Controller

- Adapter between AXI and our logic
- Supports "Data Width Matching"

A	Re-customize IP	
AXI EPC (2.0)		
1 Documentation 🕞 IP Location		
Show disabled ports	Component Name axi_epc_0 EPC Peripheral 1 Advanced Summary Address Width 32 32 [3 - 32] Data Bus Width 16 ~	
	 Enable Data Width Matching Enable SYNC Mode Support for data width match when the peripheral device data width is less than the AXI data width Timing Parameters(In Pico Seconds) 	
+ s_AXI s_axi_aclk EPC_INTF +	Address Setup Period(Tsu) 1000 Image: Constraint of Constraints o	
	Min. Read Pulse Width 15000 Min. Read Cycle Period 15000 Min. Read Data Valid Period 80000 Read Data High Impledence Period 1000 max. Ready Assertion Period 1000 Ready Valid Period 1000	

Data Width Matched Trace

ILA Status: Idle									523								
Name	Value	1500	2 a 2 î	505	510		1515	520		525	530	1 ⁵³⁵	540	545	1550	555	1560
✓						1.1											
> 🛋 slot_1 : processinad Transactions 0	Read (ID:										Read (ID:	cOc Addr:0x404	00006)				
∨ 👅 slot_1 : processinI_GP0 : AR Channe	_	<u> </u>															
🐻 slot_1 : processiXI_GP0 : ARVALI	0						2										
🐻 slot_1 : processiXI_GP0 : ARREAD	0																
> 😻 slot_1 : processM_AXI_GP0 : ARI	cOc														cOc		
> 😽 slot_1 : processAXI_GP0 : ARADD	4040000		40400	0004												40400006	
> 😽 slot_1 : processiXI_GP0 : ARBURS	INCR														INCR		
> 😽 slot_1 : processiAXI_GP0 : ARLE	0														0		
> 😽 slot_1 : processAXI_GP0 : ARSIZE	2 bytes		4 byt	tes												2 bytes	
> 😻 slot_1 : processI_GP0 : ARCACHE	2														2		
> 😽 slot_1 : processAXI_GP0 : ARPRO	Data Sec													Data Secu	ure Unprivilege	≥d	
> 😻 slot_1 : processAXI_GP0 : ARLOC	0														0		
> 😽 slot_1 : processiAXI_GP0 : ARQO	0														0		
> 😽 slot_1 : processAXI_GP0 : AR_CN	1			O		X						1					X
✓	-													21 			
🐻 slot_1 : processiAXI_GP0 : RVAL	0																
🐻 slot_1 : processAXI_GP0 : RREAD	1																
🐻 slot_1 : processiAXI_GP0 : RLAS	1	5												8			
> 😻 slot_1 : processiM_AXI_GP0 : RI	cOc														c0c		
> 😽 slot_1 : processiAXI_GP0 : RDAT	01000020			0000000								0100002	2d				
> 😽 slot_1 : processiAXI_GP0 : RRES	OKAY														OKAY		
> 😼 slot_1 : processiAXI_GP0 : R_CN	1			0		X						1					X
N = alat 1 management 0 000 avv change	- N 1 - 1 N 4 2 - 1 - 1 - 1												-	NI- III-	the title code		

Register Access Summary

• ARM expects 32 bit data to manipulate into 16 bit

- AXI doesn't care one way or another
- EPC, if configured so, will interpret an AXI transaction to accommodate ARM
- BPM only provides 16 bits per transaction
- So, we do 2 transactions to BPM for any single AXI transaction

While we're here...

Cursor B Cu	ursor A	-200ns	-180ns	-160ns	-140ns	-120ns	100ns	-80ns -6	60ns -40ns	-20ns	T+148ns	+20 <mark>ns +</mark> 4)ns +60ns	+80ns	+100ns	+120ns +140ns	Timing Parameters(In Pico Seconds)	
0	0														· · · · ·		Address Setup Period(Tsu)	1000	0
0 4000h 40	0 000h				YONYY	Or X					(Dh Ì Ì		20h			11 101	Addross Hold Pariod (Th)	1000	0
0	0																Address Hold Fellod (TH)	1000	0
0	0																Min. Width of Address Strobe	1000	Ø
0	0																Chip Select Setup Period	1000	0
0	0																Chip Select Hold Period	1000	0
0	0																Mire Minise Dudee Middle	5000	0
0	0																Min. while Paise wiath	5000	6
0	0																Min. Write Cycle Period	5000	\odot
0	0																Data Bus Setup Period	10000	0
0	0																Data Bus Hold Period	10000	Ø
1 0	1																Min. Deed Duilee Middle	15000	-
3h	2h					25							31			<u> </u>	Min. Read Pulse width	15000	6
7h 1	7h 1				<u></u>								3h				Min. Read Cycle Period	15000	۵
1	1																Min. Read Data Valid Period	80000	0
0	0				<u> </u>												Read Data High Impledence Period	1000	0
0	0																may Deady Assertian Davied	1000	0
0	0																max. Ready Assertion Period	1000	0
0	0																Ready Valid Period	1000	\odot

Critical Parameters are Read Data Valid Period and Data Bus Hold Period

Before: ~1.6 us Now: ~250 ns

Other Issues

- Coincident with the memory alignment problem
- Seems like the upper address bits are stuck
- Swapped the backplane board, works now
- Investigation ongoing

AFE Registers Dump:	
Register	Value
control	4
dcs control	Θ
fpga id	2f
ch0 gain control	Θ
ch1 gain control	100
adc mem first 1	Θ
adc_mem_first_2	Θ
turns count 1	Θ
turns_count_2	2f
next mem adr 1	Θ
next_mem_adr_2	100
temp	Θ

Other Issues (2)

- Finally caught on my local prototype via serial output
- Malformed packet interrupts tftp load, doesn't recover gracefully
- bootloader needs polish anyway, can be worked around for now

- Time sweep code
- AFE buffer test code
- Heartbeat code to know when a module is up