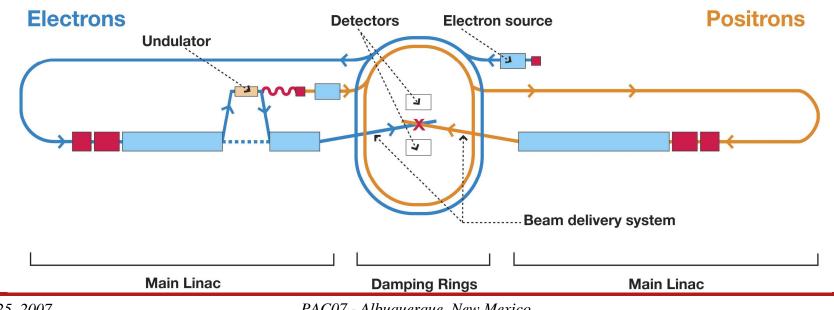


Cornell University Laboratory for Elementary-Particle Physics

ilr iic

Plans for Utilizing CESR as a Test Accelerator for ILC Damping Rings R&D Mark Palmer *Cornell Laboratory for Accelerator-Based Sciences and Education*


- ILC Damping Rings R&D Priorities for the Engineering Design Report
- CESR as a Vehicle for Damping Rings R&D
 - CESR Availability
 - CesrTA Concept and Goals
 - CESR ⇒ CesrTA Conversion
 - CesrTA Parameters
 - ILC Research at CESR Ongoing and Planned
- Conclusion

ILC Damping Rings

- Reference Design Report 2007
 - Central damping ring complex
 - Single positron damping ring
 - For an ~6 km ring, electron cloud mitigation is a serious issue
- **Engineering Design Phase**
 - Engineering Design Report \Rightarrow 2010
 - Damping Rings R&D required as well as engineering design work

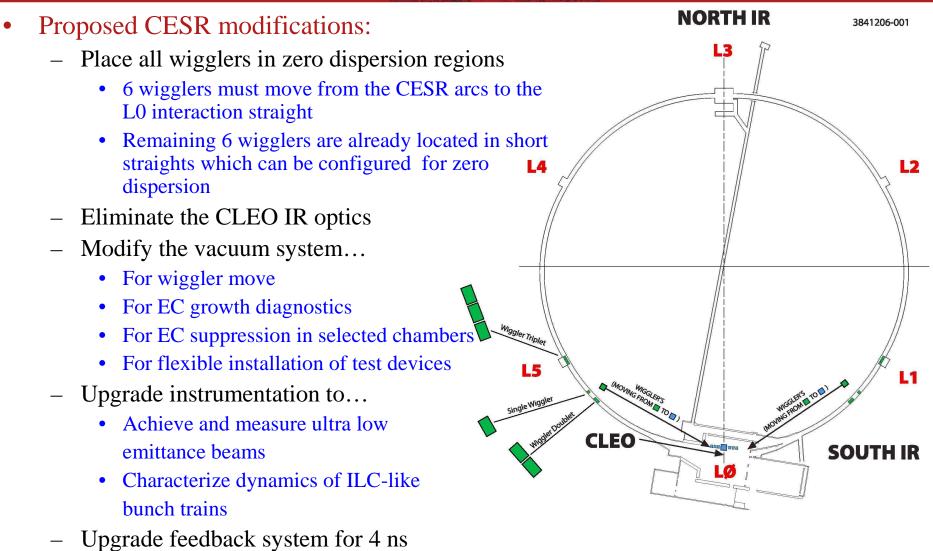
D		
Beam energy	5 GeV	
Circumference	6695 m	
RF frequency	650 MHz	
Harmonic number	14516	
Injected (normalised) positron	0.01 m	
emittance		
Extracted (normalised) emittance	8 µm × 20 nm	
Extracted energy spread	<0.15%	
Average current	400 mA	
Maximum particles per bunch	2×10 ¹⁰	
Bunch length (rms)	9 mm	
Minimum bunch separation	3.08 ns	

- Lattice design for baseline positron ring
- Lattice design for baseline electron ring
- Demonstrate < 2 pm vertical emittance
- Characterize single bunch impedance-driven instabilities
- Characterize electron cloud build-up
- Develop electron cloud suppression techniques
- Develop modelling tools for electron cloud instabilities
- Determine electron cloud instability thresholds
- Characterize ion effects
- Specify techniques for suppressing ion effects
- Develop a fast high-power pulser

• CESR

- Nearly 3 decades of colliding beam physics at Wilson Laboratory will conclude on March 31, 2008
- It may be possible after the conclusion of HEP to carry out a program of ILC damping rings R&D ⇒ CesrTA
- CesrTA Goals:
 - Support critical damping rings R&D on a timescale compatible with EDR completion in 2010
 - Provide sufficient amounts of dedicated running time to facilitate key damping ring experiments
 - Provide an R&D program complementary to work going on elsewhere (*eg*, at KEK-ATF)

- Offers:
 - An operating wiggler-dominated storage ring
 - R&D with the CESR-c damping wigglers
 - Baseline technology choice for the ILC DR
 - High-field, large-aperture wigglers with exceptional field quality
 - Flexible operation with positrons and electrons in the same ring
 - Flexible energy range
 - 1.5 GeV 5.5 GeV
 - Dedicated experimental runs for ILC R&D starting in 2008

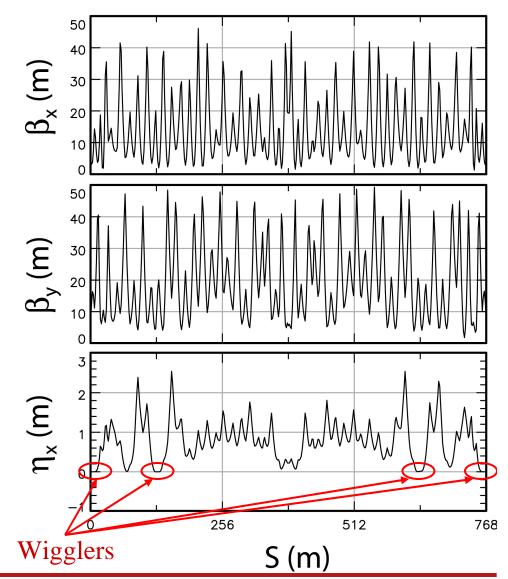


CesrTA Experimental Reach

- A number of *High* and *Very High* priority R&D items, as specified by the damping rings R&D task force, can be addressed with CesrTA
 - Electron Cloud (EC) for the Positron DR
 - Study cloud growth in quadrupoles, dipoles, and wigglers
 - Study cloud suppression in quadrupoles, dipoles, and wigglers
 - Study instability thresholds and emittance growth
 - The decision to employ a single positron damping ring has increased the significance of these issues
 - Ion Effects for the Electron DR
 - Study instability thresholds and emittance growth with ILC-like trains
 - Evaluate suppression methods
 - Ultra Low Emittance Operation
 - Evaluate:
 - Alignment and survey issues
 - Beam-based alignment techniques
 - Optics correction techniques
 - Ultra low emittance measurement and tuning
 - Demonstrate ultra low emittance operation with positron beams
 - System and Component Testing
 - For example: ILC prototype wiggler, injection/extraction kickers, etc

CESR ⇒ CesrTA Conversion

bunch train operation

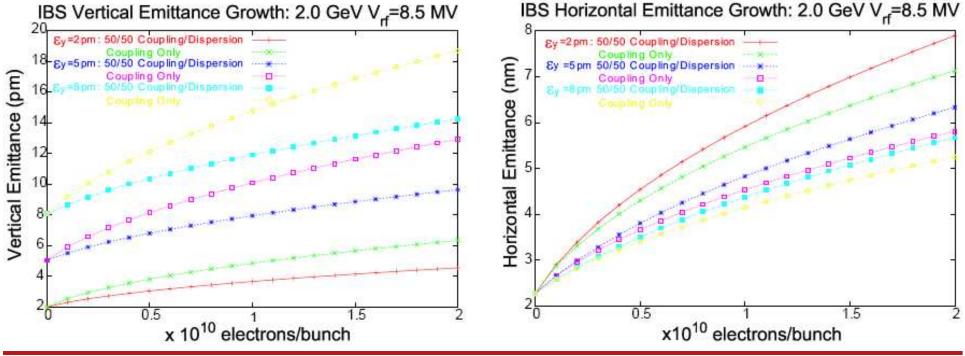

Cornell University Laboratory for Elementary-Particle Physics

CesrTA Parameters

Baseline Lattice

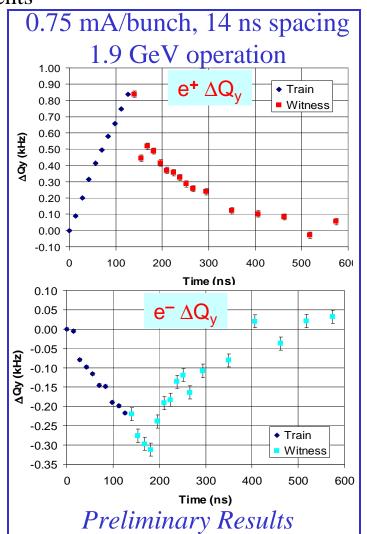
Parameter	Value
E	2.0 GeV
N _{wiggler}	12
B _{max}	1.9 T
$\varepsilon_{\rm x}$ (geometric)	2.3 nm
ε_{v} (geometric) Target	5–10 pm
$\tau_{x,y}$	56 ms
$\sigma_{\rm E}/{\rm E}$	8.1 x 10 ⁻⁴
$\overline{Q_x}$	14.54
Q _v	9.61
Q _z	0.070
Total RF Voltage	7.6 MV
σ _z	8.9 mm
$\alpha_{\rm p}$	6.2 x 10 ⁻³
τ _{Touschek}	>10 minutes
Bunch Spacing	4 ns

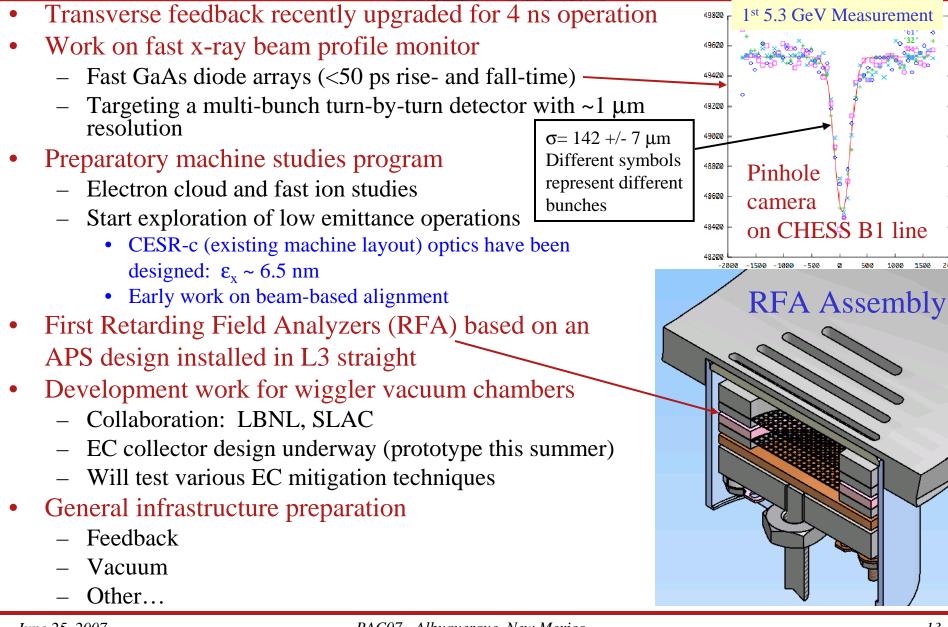
CesrTA Baseline Lattice, E = 2 GeV


Lattice Evaluation

Dynamic Aperture CesrTA Baseline Lattice, $E = 2 \text{ GeV}, V_{rf} = 7.6 \text{ MV}$

Dynamic aperture 10 1 damping time -----δE/E=0 Q x = 0.539993910349 Injected beam fully coupled Q_y = 0.609992979634 -×-δE/E=0.005 Q z = -7.00060788860 **---**δE/E =0.01 8 • $\varepsilon_x = 1 \,\mu m$ /ertical displacement (mm) σ . ($\epsilon = 1 \mu$ m) • $\varepsilon_v = 500 \text{ nm}$ Have explored alignment sensitivity and low 6 emittance correction algorithms for various assumptions ⇒ results consistent with achieving 4 our vertical emittance target of 5–10 pm 2 Worst Case Nominal **Element Misalignment** 150 µm Quad/Bend/Wiggler Offset 300 µm Sextupole Offset 600 µm 300 µm -10 -5 -15 5 10 15 0 Rotation (all elements) 1 mrad 2 mrad Horizontal displacement (mm) 4 x 10⁻⁴ 4 x 10⁻⁴ **Quad Focusing Vertical Emittance Beam Position Monitor Errors Alignment/BPM Errors** Mean 95% C.L. Absolute (orbit error) 10 µm 50 µm Nominal 2.0 pm 4.7 pm Relative (dispersion error) $2 \,\mu m$ 10 µm Worst Case 6.5 pm 11.3 pm Rotation 1 mrad 2mrad


- Transverse emittance growth for different contributions of coupling and dispersion to the vertical emittance
 - Baseline lattice
 - Compare different corrected optics assumptions
 - ~9 mm bunch length
- IBS effects will be significant
 - Energy flexibility of CESR and γ^4 IBS dependence offers a flexible way to study, control and understand IBS contributions to emittance relative to other physics under consideration


Ongoing R&D Using CESR

- Multi-bunch turn-by-turn instrumentation has been commissioned in CESR
 - Beam position and vertical beam profile measurements
 - See posters THPAN087 and FRPM047 for beam profile measurement details
- Example: Witness Bunch Studies
 - Initial train of 10 bunches to generate EC
 - Witness bunches placed at varying distances behind train
 - Vertical tune shift for both beams consistent with presence of EC (observed horizontal tune shifts are much smaller in magnitude)
 - − Positron tune shift: 1 kHz $\Rightarrow \Delta v = 0.0026$
 - $\rho_e \sim 1.5 \text{ x } 10^{11} \text{ m}^{-3}$ (model of Ohmi, et al., APAC01, p. 445)
 - Electron tune shift
 - Magnitude of shift along train is ~1/4th of shift for positron beam
 - NOTE: Shift continues to grow for 1st 4 witness bunches!

Preparation for CesrTA

CesrTA Experimental Program

- Schedule:
 - Primary conversion down in mid-2008
 - 2 CesrTA experimental runs scheduled for 2008
 - 2009 onwards:
 - 3 CesrTA experimental runs/yr totaling $\sim 1/3^{rd}$ of each year
 - 3 High Energy Synchrotron Source (CHESS) runs/yr totaling $\sim 1/3^{rd}$ of each year
 - Remainder of year scheduled as down and commissioning time for hardware installation and experimental setup
 - Provides flexible scheduling of experiments for collaborators
- Experimental Focus Recap:
 - EC Growth and Mitigation Studies particularly in the damping wigglers
 - Bunch trains similar to those in the ILC DR
 - Ultra Low Emittance Operation
 - Validation of correction algorithms
 - Measuring, tuning for, and maintaining ultra low emittance
 - Beam Dynamics Studies
 - Detailed inter-species comparisons (distinguish EC, ion and wake field effects)
 - Characterize emittance growth in ultra low emittance beams (EC, ion effects, IBS,...)
 - Demonstrate ultra low emittance operation with a positron beam
 - Test and Demonstrate Key Damping Ring Technologies
 - Wiggler vacuum chambers, optimized ILC wiggler, diagnostics, ...

- CesrTA conceptual design work is ongoing
 - Program offers unique features for critical ILC damping ring R&D
 - Simulations indicate that the emittance reach is suitable for a range of damping ring beam dynamics studies
 - The experimental schedule will allow timely results for ILC damping ring R&D!

• Co-Authors

– J. Alexander	– M. Ehrlichman	– D. Hartill
– R. Helms	– D. Rice	– D. Rubin
– D. Sagan	– L. Schächter	– J. Shanks
– M. Tigner	– J. Urban	

• CESR Machine Studies and General Support

– M. Billing

G. Codner

G. Dugan

- S. Chapman
- J. Crittenden
 - R. Meller

– J. Sikora

– E. Tanke

- R. Holtzapple (Alfred Univ.)
- J. Kern (Alfred Univ.)
- B. Cerio (Alfred Univ.)

- Visitors for EC Studies:
 - J. Flanagan (KEK), K. Harkay (APS), A. Molvik (LLNL), M. Pivi (SLAC)

—