

Cornell University Laboratory for Elementary-Particle Physics

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice *Cornell Laboratory for Accelerator-Based Sciences and Education*

Introduction

• Outline

- CESR Overview

- CESR Layout
- Injector
- Wigglers
- Modifications for CesrTA
- Optics for low-emittance operation

CESR Layout / Injector

e+/e- colliding beams 1.5-5.5 GeV Circumference 768 m 45 bunches/beam in trains, Synchrotron electrostatic separation Currents in CESR to Transfer Line 2x350 mA @ 5.3 GeV >1x150 mA @1.9 GeV 120 keV gridded gun Linac 150/300 MeV linac Converter Gun Full energy synchrotron (60 Hz) CHESS G Line Flexible timing, ~20 bunches/cycle Filling rates to 100/300 mA/minute CHESS **CLEO**

1600799-005

CESR

Storage Ring

Transfer Line

e

CHESS

RF Numerology

- RF frequencies critical to CesrTA bunch patterns
 - CESR / Synchrotron / Linac / Gun prebuncher
 - All RF systems phase locked from common source
 - Highest common frequency 71.4 MHz (<u>T=14 ns)</u>

			Bucket	Harmonic #
System	Frequency	Mult x h.c.f.	Spacing	in CESR
Highest common freq.	71.4 MHz	1	14 ns	183
Injector Prebuncher	214 MHz	3		
Linac	2856 MHz	40		
Synchrotron	714 MHz	10		
CESR	499.8 MHz	7	2 ns	1281

Multiple CESR buckets on 14 ns pattern can be filled on a single injection cycle. Injector RF chain can be phase shifted between injection cycles to fill any CESR buckets.

- The OCS6 ILC Damping Ring lattice employs 80 wiggler magnets to achieve its radiation-determined parameters to meet ILC requirements.
 - Effective length: 2.5 m
 - Peak operating field: 1.67 T (max 2.1 T)
 - Magnetic period: 40 cm
- The 12 wiggler magnets in CESR were designed for CESR-c conditions – e+/e- colliding beams 1.5-2.5 GeV beam energy.
- The basic magnetic properties of the CESR-c wigglers closely match the ILC DR design.

Wiggler Magnets

- Several considerations for CESR-c operation determined the principal wiggler properties:
 - Large vertical aperture 5 cm in warm bore
 - w/ 2.1 T field \rightarrow super-ferric technology
 - $-\pm 2$ cm horizontal "pretzel" orbits
 - wide good-field region $-\Delta B_{\rm Y} = +0.0$, -0.3% over aperture
 - Flexibility in operating field
 - Even # poles to reduce center-end pole difference effects
 - Ring layout constraints
 - ~1.7 m flange-flange

Wiggler Parameters

Parameter	Value	
Technology	Super-ferric	
Peak Field	1.5-2.1 T	
Wiggler Length	1.3 m	
Number of wigglers	12	
Field period	40 cm	
Transv. width of poles	23 cm	
Number of poles	6-20 cm, 2-10 cm,	
	2-5 cm	
Pole gap	7.6 cm	
Operating Current (2.1 T)	185 A	
Wire operating margin	50%	

CESR-c Wiggler Layout

12 damping wigglers are placed in 6 clusters according to available space in CESR.

- Cryogen distribution
- Optics manipulation

- Rigorous training and measurement program
 - Most trained with 2-3 quenches to 2.3 T no operational problems with magnets.
 - Hall probe and long flip coil, folded flip coil measurements

Wiggler Field Validation w/Beam

- Beam based measurements confirmed field quality:
 - Bunch length ($\rightarrow \sigma_{\rm E}/\rm{E}_0 = 8.62 \text{ vs. } 8.47 \text{x} 10^{-4}$)
 - Betatron tunes vs beam position, wiggler field

Modifications

- Outline
 - CESR Overview

-Modifications for CesrTA

- L0 (CLEO detector)
- L3 (180° from CLEO)
- Arc magnets
- Feedback, diagnostics, survey & alignment
- Optics for low-emittance operation

Cornell University Laboratory for Elementary-Particle Physics

Modification Regions

- Conversion for low-emittance operation:
 - Minimize number of wiggler regions to facilitate dispersion control

L0 Modifications

- L0 Layout w/ wigglers, quads, steering (FY08)
 - Remove CLEO VD, DR, RICH, ENDCAP
 - Install elements on rails
 - Cryogenics services from existing SC quad facilities

L3 Modifications

• L3 changes

- Remove 2 vertical separators, replace with instrumented beam pipes (FY08)
- Install upgraded s.r. optics (streak camera) (FY08)
- Install EC instrumentation in quads and drifts (FY09-10)

Arc Modifications

- 6 wigglers to be removed from arcs instrument replacement chambers
 - RFA's in drifts, bends (FY08, 09)

- Quad, sextupole alignment system upgrade
 - LiCAS-II system not funded by STFC
 - Modify alignment fixtures for better resolution (FY08)
 - Install new target system (FY08,09)
 - Purchase and implement laser tracker system (FY09)
 - \rightarrow x2-3 speedup in survey & alignment process
 - \rightarrow improved survey accuracy

- Electron Cloud diagnostics
 - Retarding Field Analyszers in drift and quad chambers
 - Low profile RFA's in wigglers and bend chambers
- Low emittance diagnostics
 - Upgrade BPM processing electronics higher resolution, speed
 - High resolution X-ray beam profile monitor single pass bunch-by-bunch, extendable to 2-D
- Other
 - Upgrade Synchroscan streak camera unit for 4 ns spacing, optics for 2-D recording
 - Extend vacuum instrumentation
 - Partial pressure analyzers, controlled leaks for selected gases, temperature monitoring, gate valves for quick changes, etc.

Feedback Systems

- Present CESR bunch-by-bunch feedback systems in place for bunches in 14 ns buckets.
 - Transverse systems:
 - Standard bpm position pickup
 - Digital processing bunch-by-bunch, variable turns delay
 - Strip line kickers
 - Damping rates ~ 2000 /s
 - Longitudinal system:
 - Standard bpm pickup
 - Digital processing bunch-by-bunch
 - Low Q DAFNE style cavity to drive beam
 - Damping rates ~ 50 /s

- CesrTA Feedback (4 ns bunch spacing)
 - Transverse:
 - Wideband system with direct path across tunnel diameter

- CesrTA Longitudinal Feedback
 - Upgrade of processing electronics and a slightly modified cavity design and amplifier will permit feedback near present damping rates.
 - Removal of vertical electrostatic separators in L3 is predicted to raise longitudinal instability threshold x4-5

- Outline
 - CESR Overview
 - Modifications for CesrTA

–Optics for low-emittance operation

Optics

- CESR Optics process
- CesrTA in-progress optics

- Every quadrupole & sextupole is independently controllable
- No "standard cell"
- Optics realization:
 - Several optimizer engines available
 - Tracking with non-linearities to find partial derivatives
 - -27 years experience using technique with CESR optics

Wiggler modeling

- Wigglers are modeled using OPERA-3D, producing a 3-D field map.
- The field map is fit to satisfy Maxwell's equations
- The fit is then integrated symplectically using the Hamiltonian to a user defined order – usually third order
- The wiggler is not varied in the optimization process, however optimizations have been done at discrete wiggler fields - 2.1T, 1.9T, 1.7T

Optics Correction

• Fast phase measurements system permits full (including coupled) optics correction in a few

• Dispersion, chromatic corrections also possible.

2 GeV Optics

• Preliminary optics results

2 GeV Dynamic Aperture

Dynamic aperture calculations use ACTUAL physical apertures to identify lost particles.

Dashed lines show losses in 20 turns (~physical aperture).

Solid lines show losses in 1000 turns ("dynamic aperture")

0, 0.5%, 1% dp/p₀

Yellow curve = 3 σ injected beam ($\epsilon_x = 1000 \text{ nm}, \epsilon_y = \frac{1}{2} \epsilon_x$)

Sextupole, wiggler nonlinearities included

• Development of optics at 2, 2.5, 5 GeV in progress

Parameter	2.0 GeV	2.5 GeV	5.0 GeV
B _{Wig}	1.9 T	2.1 T	1.9 T
ε _x	2.3 nm	3.4 nm	30.7 nm
Q _{x,y}	14.57, 9.62	14.57, 9.62	14.57, 9.62
$\tau_{damp(x,y)}$	56.4 ms	35.7 ms	19.1 ms
$\tau_{i.b.s.}$	~12 m	~22 m	
$Q_z @ MV_{RF}$	0.054@4.6	0.081@12.5	0.05@9
σ	9 mm	9 mm	9 mm

- Most topics discussed will be described in more detail in subsequent talks.
- The LEPP staff have extensive experience making effective use of the optics flexibility of the CESR facility.
- This flexibility and the experienced LEPP staff provide an effective and economical conversion path to CesrTA.