X-Ray Beam Size Monitor for CESRTA

Bunch-by-bunch measurements of beam profile for fast emittance determination

- Image individual bunches spaced by 4ns.
- Transverse resolution << 10~15μm beam size
- Non-destructive measurement.
- Flexible operation.
- Start simple, allow various upgrade paths.

Concept

ILC damping ring requirements/motivation

Like CESRTA itself, this beam size monitor is motivated by ILC needs.

- Beamsize monitoring in the ILC Damping Rings requires bunch-by-bunch capability because long trains are "folded" in the DR.
 - This means neighboring bunches can be at quite different stages of their damping history. Single bunch isolation is essential; averaging over hot and cold bunches yields a meaningless result.

Example: x-ray BSM at KEK-ATF

- 3.24 keV xrays from ATF bend dipole (monochromator: $\Delta E/E \sim 6x10^{-5}$)
- Vertical beam size ≤10µm
- Spatial resolution at source = 0.7 μ m;
- Time resolution ~ 1ms

Design Considerations for CESRTA (Part 1)

For CESRTA Goals, optimization is different from ATF:

- 1. vertical beam size is $\sigma_v \sim 10-15 \mu m \rightarrow \leq 5 \mu m$ resolution suffices.
- bunch-by-bunch requirement → need adequate photon transmission for a single pass measurement. Precision is determined by photon statistics, not optical resolution.

The design shown above, imported into CESRTA, yields ~10 photons per bunch → Needs modification!

Strategy: Increase photon transmission, give up some resolution.

- Delete second lens. Improves transmission x5.
- Use multilayer mirrors: x100 larger bandwidth than silicon crystal
- Move objective lens closer to source. Diameter can be reduced, which decreases the number of rings needed, matches bw of mirrors.
- Overall spatial resolution degrades, but photon transmission increases.
- Photon yield in CESRTA ~ $10^{2\sim3}$
- For simplicity, reduce to one-dimensional measurement (σ_v)

Features that affect performance

Interrelationships and Optimization

• $D^2 = 4N\lambda f$ • $\sigma = \frac{\lambda \gamma}{2} \sqrt{\frac{3\lambda_c}{\lambda}}$ $D = \frac{1}{2}$ **p** γ • $\frac{1}{N} = \frac{\Delta \lambda}{\lambda}$ $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$ • $M = \frac{q}{2}$

Fresnel Criterion

Diffraction limited resolution (SR fan)

Objective lens encompasses all of SR fan

Match bandwidth of monochromator

Image-object-focal length relation

Magnification of one-lens system

• $M = \Delta x / \sigma_y$

Set magnification for optimal sampling in pixel detector

7 Equations in 9 unknowns. optimize over remaining variables: sourcelens distance (p), and x-ray wavelength (λ).

Parameters for CESRTA xray Beam Size Monitor

Beam and Radiation Parameters

Optical System Parameters

Parameter	Value	Units	Parameter	Value	Units
Beam energy	2.0	GeV	Source to lens distance	4.0	m
Bunch current	1.0	$\mathbf{m}\mathbf{A}$	Lens to detector distance	12.0	m
Bunch Charge	$1.6 imes 10^{10}$		Height of synch rad fan at lens	0.63	$\mathbf{m}\mathbf{m}$
Vertical size (σ_y)	$10 \sim 15$	μm	Image magnification factor, M	3.0	
Lorentz γ	3914		Detector Pixel Size	25	μm
Dipole bend radius	31.654	m	Lens diameter	1.02	$\mathbf{m}\mathbf{m}$
Critical energy	0.564	keV	Number of Fresnel zones	140	
Critical wavelength	2.2	nm	Focal length	3.0	m
Photon energy	2.0	keV	Transparency	0.18	
			Multilayer mirror bandwidth	0.010	
			Multilayer reflectivity	0.36	
			Overall transmission factor	0.023	
			Energy transmitted, per bunch	1.04	MeV
			Ionization charge in detector	39.9	\mathbf{fC}
			Resolution: detector pixellation	2.4	μm
			diffraction at source	1.3	μm
			chromatic aberration	0.5	μm
			Fresnel zone plate PSF	0.3	μm
			Total resolution	2.8	μm
			Number of photons on detector	521	

Sidebar: Resolution, Precision, and Photon Statistics

 Optical transfer function is characterized by a resolution (point spread function). This is a *fixed property* of the optical system.

For CESRTA design, it is $2-3\mu m$. (Figure at right assumes $3.5 \ \mu m$)

- Photon statistics (and electronic noise, if applicable) fluctuate from snapshot to snapshot.
- The *measurement precision* of this system is determined by the stochastic element, not the fixed correction*.

* Residual uncertainty in the optical resolution will appear as a systematic error

Prototype study, in CHESS, 2006 (Slide 1)

Single GaAs photodiode (46μm dia)
Optics: pinhole. (40μm vertical slit)
White beam (no monochromator)
Data acquisition: *72MHz (14ns interval); 12 bit ADC.*Mechanically scanned vertically and horizontally through the beam - "synthetic aperture camera"

Single bunch, single pass data - no averaging over turns.

Prototype study, in CHESS, 2006 (Slide 2)

Single bunch, single pass snapshots

Result of vertical beam scan

(single pixel)

Measured:

- S/N_e = 27
- photons per bunch is ~400
- Signal risetime << 300ps
- Observed beam size $142\pm9\mu m$ (expect ~150)

Calculated:

- Energy abs'd/bunch 6.0 MeV
- Ionization per bunch 230 fC
- Averge photon energy: 13keV

Radiation damage post-study: 700GRad over 4 days, diode current dropped x2.

(Comment: electronic noise was <u>not</u> optimized!)

Prototype study, in CHESS, 2006 (Slide 3)

*includes electronic noise

X-ray beam size monitor for CESRTA

- 1. Sensors
- 2. Data acquisition
- 3. Xray optics
 - a) Monochromator
 - b) Fresnel Zone Plates

Sensors

- GaAs/InGaAs 1-dim photodiode array
 - 512 diodes, 25µm x 500µm
 - Hamamatsu G9494-512D
 - Off-the-shelf
- Why GaAs?
 - High carrier mobility (8400 cm²/Vs)
 & drift velocity (200 μm/ns)
 - High Z, high density
 - short abs length
 - $\sim 1 \mu m$ at 2.5keV
 - Room temperature ops.
 - Good radiation hardness
 - Commodity parts available;
 - IR receivers for 10Gbps optical ethernet

Fast:
 << 1ns

Data Acquisition

Jim Alexander

Existing system:

- 32 channel parallel digitization, every 14 ns
 - Preamp: OPA842,
 - $-\,$ gain=2, 150MHz bw, 20 μV rms noise at input
 - ADC: AD9236
 - 12 bit, 500 MHz, 80MSPS, SNR=70dB (~3300)

- DSP provides power & flexibility

- On board storage and processing
- Deep memory holds10K turns of 45 bunch data allows easy, optional integration over multiple turns
 - Low beam current circumstances
 - Study of beam tails, halo, etc
- Bunches can be timed in to 10ps

- In use in several CESR diagnostic systems

- BPMs (high gain input, dual ADCs)
- Fast Lumi Monitors
- Optical Beam Size Monitor (high gain input)
- xRay Beam Size Monitor

Upgrades required for CESRTA (4ns bunch spacing)

- Higher bandwidth, lower noise front end. Prototype exists...
- Faster digitization: multiple paths, as for BPM system.

BEAM SIZE / XRAY MONITOR

Monochromator

- Tungsten-Carbon multilayer mirror pair
 - 100 layers, 2.95nm period, SiO2 substrate
 - Appropriate bandwidth: ~1%
 - Reflectivity ~ 40%
 - Bragg angle $\sim 6^{\circ} >$ limited footprint
 - Expertise in laboratory (CHESS)
 - Design/procurement
 - Mounting, alignment, & controls
 - Cooling!

Fresnel Zone Plates

- Provide point-to-point imaging
- Require approx monochromatic beam
 - $\lambda/\Delta\lambda \sim \#$ rings
 - Simple FZP (# rings ~ 10²) well matched to multilayer mirror BW.
 - These requirements are very modest:
 - Photon-hungry application → need large BW, → small number of rings
- Commercially available (xRadia,...)
- PSF determined by width of last ring
 - FZP, monochromator, magnification, detector pixel size must all be related: optimization

2-dim focussing

1-dim focussing

Zone Plate Studies at CHESS, June 2007

Next Prototype study, in CHESS, October 2007

- Test prototypes of all key components of CESRTA design
 - *multilayer mirrors*, cooling, mechanics, alignment, orientation
 - Fresnel Zone Plate .. x3 demagnification (okay large beam)
 - full size 1-dim detector, 32⁺⁺ channels simultaneous readout
 - test adjustable effective pixel height ($\Delta x \sin \theta$)
 - single pass, single bunch snapshot imaging, as before
 - improved high BW, low noise readout
 - study radiation damage in more detail than previous run
- Not tested:
 - 4 ns bunch conditions, 2 GeV beam

Manpower & resources

Physicists

LEPP: J.A., Mark Palmer, Jake Lee CHESS: Ernie Fontes, Alex Kazimirov, Peter Revesz Alfred University: Robert Holtzapple

Engineers

John Dobbins, Charlie Strohman, Eugene Tanke

Laboratory shops and technical staff

CHESS scientists provide expertise in xray optics LEPP scientists provide expertise in detector technology & electronics

Scale to needs: upgrade paths for xBSM

- The design shown here is minimal. Can be ready on Day One.
- With experience, and depending on needs, improvements could be undertaken:
 - Additional readout channels --> expand dynamic range, simplify operations
 - Two-dimensional photodiode array for full x-y imaging

Broader Impacts

Students who have participated so far in one way or another:

Nick Taylor -- graduate student in General Relativity Richard Gray -- graduate student in HEP Laura Fields -- graduate student in HEP Jake Lee -- undergraduate physics major Ivan Rankenburg -- graduate student in condensed matter theory

HEP physicists participating in ILC accelerator physics

University contributions to ILC

Summary

- Nondestructive, fast, high resolution beam size monitoring can be provided for low-emittance diagnostics.
- Resolution is sufficient to probe ~10 μ m vertical beam size
- High speed detector & readout allows single pass imaging
- Readout system is adaptive and offers flexible operations. Multiturn averaging is available without any alterations.
- Tests to date have confirmed detector performance; optical elements will be tested in upcoming run.
- Low technical risk. Existence proof at KEK-ATF. Main new element here is speed. Sensor and optical components are readily available, off-the-shelf commercial items.
- Natural upgrade paths exist should circumstances require or suggest improvements.
- CHESS participation has been and continues to be extremely valuable.
- Excellent educational vehicle for students.