Revised CesrTA Damping Rings R&D Plan

The revised CesrTA proposal preserves the essential components of the damping rings R&D plan including:

1. Electron cloud growth and instability studies:
 a. Measure cloud growth in wiggler, dipole, quadrupole fields
 b. Test the effectiveness of electron cloud suppression techniques
 c. Measure instability thresholds and emittance growth at the lowest achievable emittance.
 d. Test instrumented wiggler vacuum chamber at 5GeV

2. Development of low emittance tuning techniques with a goal of achieving < 20pm vertical emittance
 a. Implement high resolution single turn BPM electronics for precision measurement of orbit and dispersion
 b. Upgrade survey equipment to improve the efficiency and accuracy of alignment of guide field magnets
 c. Analysis of beam based measurements to identify sources of emittance dilution
 d. Implementation of corrective measures based on findings (c)
 e. Test and refinement of low emittance tuning algorithms

3. X-ray beam size monitor
 Development of 1-dimensional x-ray beam size monitor with the capability of measuring variations of beam size at the lowest attainable emittance for both electrons and positrons.

Given the reduction in the duration of the program, the contributions from the DOE that enable early deployment of key instrumentation are critical to maintaining the essential components of the R&D plan.

The elements of the CesrTA proposal that will be deemphasized or eliminated include:

1. Study of ion related instabilities and emittance dilution
2. 2-dimensional x-ray beam size camera upgrade
3. Contingency for
 a. Follow-up tests of alternative mitigation techniques
 b. Tests of ILC prototype hardware
 c. Further reductions in beam emittance, and further refinement of low emittance tuning methodology.

Low Emittance Tuning

Low emittance tuning depends on implementation of new instrumentation, upgraded beam position monitors for precision measurement of orbits, upgraded equipment for magnet survey and alignment, and x-ray beam size monitor to measure the ultra-low emittance. Beam based measurements will be used to identify sources of emittance blowup. Thanks to the contribution from the DOE for new equipment, acquisition and installation of digital beam position monitor electronics can be completed during the third
major shutdown and upgraded survey equipment is available during the second shutdown. Both permit an accelerated start of the low emittance tuning program.

X-ray Beam Size Monitor

The ability to measure vertical emittance in the picometer regime for both electron and positron beams is essential to the CesrTA program and we plan to accelerate the purchase of the x-ray optics and installation of the x-ray beam lines. We had originally proposed to enhance the functionality of the beam size monitor with a 2 dimensional camera upgrade. However, the 2-d capability is not critical to the low emittance tuning effort or the e-cloud research plan. In view of the limited running time, we do not expect to pursue the 2-d upgrade. Horizontal and vertical emittance measurements in this scenario will be carried out independently.

Ions

Because the available experimental time is limited, we will de-emphasize the fast ion studies.

Running Time

The greatest impact of the reduction in running time necessitated by the revised budget is the loss of contingency for investigating unexpected discoveries, and testing ILC prototypes, and a modest increase in our low emittance target.

Collaboration

We are exploring the possibility of collaboration with university research groups. In particular we are preparing descriptions of several components (eg, fast readout electronics for the electron cloud retarding field analyzers) which have a scope that is well-matched to work by university groups. We are negotiating with Alfred University to provide hardware as well as manpower resources for the development of the x-ray beam size monitor. We are pursuing expanded collaborations with Daresbury, LBNL and SLAC which may be able to provide hardware needed for the electron cloud experimental program. Indeed collaboration is essential to insure that the CesrTA R&D is integrated and consistent with the overall ILC damping rings program. If we are unable to persuade collaborators to contribute hardware to the CesrTA effort, we will necessarily reduce the number of tests of alternative e-cloud mitigation techniques.
Revised CesrTA Time Line with Tasks and Milestones

<table>
<thead>
<tr>
<th>Period</th>
<th>Date</th>
<th>Duration</th>
<th>Tasks and Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down 1</td>
<td>5/19/08</td>
<td>15 days</td>
<td>1) Install first instrumented dipole chamber along with additional instrumented drift chambers in CESR</td>
</tr>
</tbody>
</table>
| CesrTA Run 1 | 6/3/08 | 28 days | 1) Electron cloud growth studies in instrumented chambers at 2-2.5 GeV
2) Low emittance operation and alignment studies in CESR-c configuration |
| Down 2 | 7/1/08 | 92 days | 1) Reconfigure CESR for low emittance
a. Wiggler moves (from arcs to L0)
b. Vertical separator removal (L3)
2) Instrumented vacuum chambers (RFAs)
a. Install first wiggler chambers with EC instrumentation and mitigation hardware (L0 installation) and adjacent drift chambers.
b. Dipole and drift chambers in arcs (regions where wigglers removed). Mitigation hardware dependent on collaborator support
c. Drift chambers (or possibly dipole chicane if available from SLAC) in L3
3) Optics line for X-ray beam size monitor (positrons)
4) Deploy upgraded BPM system around part of ring
5) Upgraded leveling and adjustment system on quadrupole stands |
<table>
<thead>
<tr>
<th>Period</th>
<th>Date</th>
<th>Duration</th>
<th>Tasks and Milestones</th>
</tr>
</thead>
</table>
| CesrTA Run 2 | 11/18/08 | 42 days | 1) Tests of EC growth in vacuum chambers at 2-2.5 GeV. Characterize growth as a function of bunch spacing, intensity, train configuration, emittance.
2) Continue beam-based and instrumental alignment program to achieve ultra low emittance
3) Experiments at low emittance to explore instability thresholds and emittance dilution due to the ECI and FII
4) Commission positron X-ray BSM |
| Down 3 | 1/6/09 | 43 days | 1) Complete alignment/survey upgrade
2) Install 2 additional instrumented dipole chambers with EC mitigation*
3) Install 3 instrumented quad chambers (L3) with EC mitigation*
4) Complete BPM system upgrade
5) Install solenoid windings in drift regions |
| CesrTA Run 3 | 4/7/09 | 42 days | 1) EC growth measurements in chambers in 2-5 GeV range
2) Continued work to achieve ultra low emittance
3) Instability and emittance dilution experiments |
| Down 4 | 7/7/09 | 49 days | 1) Install optics line for electron X-ray beam size monitor
2) Complete longitudinal feedback upgrade
3) Installation of additional vacuum chambers with EC diagnostics and mitigation as determined by results of CesrTA runs 1-3, perhaps at a reduced level, depending on funding.
4) Install photon stop for 5 GeV wiggler operation in L0 |
| CesrTA Run 4 | 9/21/09 | 42 days | 1) Complete evaluation of electron cloud growth in wiggler, dipole and quadrupole chambers. Compare with simulation and prepare evaluations for ILC EDR
2) Continue program to achieve ultra low emittance
3) Detailed experiments at the lowest achieved emittance to characterize EC instability thresholds and emittance dilution
4) Commission electron X-ray beam size monitor
5) Measure electron cloud growth and mitigation in wigglers at 5GeV |
<table>
<thead>
<tr>
<th>Period</th>
<th>Date</th>
<th>Duration</th>
<th>Tasks and Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>CesrTA Run 5</td>
<td>12/21/09</td>
<td>42 days</td>
<td>1) Continue program to achieve ultra low emittance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Experiments to characterize instability thresholds and emittance dilution and prepare evaluations for the ILC EDR</td>
</tr>
<tr>
<td>Down 5</td>
<td>2/1/10</td>
<td>21 days</td>
<td>1) Install additional vacuum chambers with EC diagnostics and mitigation as determined by results of CesrTA and other ILC experimental programs, perhaps at a reduced level depending on funding</td>
</tr>
<tr>
<td>CesrTA Run 6</td>
<td>2/23/10</td>
<td>42 days</td>
<td>1) Complete program to achieve ultra low emittance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2) Characterize electron and positron instability thresholds and emittance-diluting effects at the lowest achievable vertical emittance for both electrons and positrons</td>
</tr>
</tbody>
</table>
Applicant and Principal Investigator: Prof. David L. Rubin

Project Director: Dr. Mark A. Palmer

Project Title: The Conversion and Operation of the Cornell Electron Storage Ring as an International Linear Collider Damping Ring Test Accelerator.

Comment: On recommendation of the agencies, this proposal is being sent jointly to the Department of Energy and the National Science Foundation.

Major Participants: SLAC, LBNL, ANL, KEK, FNAL, Cockcroft Inst., Technion-Haifa, and Alfred Univ.

In 2008 the Cornell Electron Storage Ring (CESR) will end nearly three decades of providing electron-positron collisions for the CLEO experiment. At that time it will be possible to reconfigure CESR as a damping ring test accelerator, CesrTA, for the International Linear Collider (ILC) project. As the world's only operating wiggler-dominated storage ring, CESR offers a unique opportunity with which to investigate beam physics and instrumentation critical to the design and operation of the ILC damping rings that are perhaps the most challenging accelerator system in the ILC. The CESR-c damping wigglers are the technology choice for the ILC baseline design [1]. CesrTA will operate with horizontal emittances in the nanometer range and a vertical emittance and bunch spacing approaching those specified for the ILC damping rings. A core component of the CesrTA research program will be to study the electron cloud effect (ECE) in the damping wigglers as well as in other machine components, and techniques to suppress it – a critical ILC design issue. An instrumented vacuum section with wiggler, bend, quadrupole and drift regions will be used for these studies. The measurements from these studies will be used to test the simulations of ECE. The changes required to make CESR available as a test accelerator are modest so that research results will be available in time for use by the ILC program.

Ultra low vertical emittance operation will be achieved using the sophisticated tools developed by the CESR operations group to correct orbit, focusing, coupling, and dispersion errors from beam based measurements. Improved algorithms based on these techniques will be developed as part of this project, as will new instrumentation designed to measure the very small vertical beam size. ECE suppression techniques in wigglers, crucial for finalizing the ILC design, will be investigated. The CESR injector can deliver electron as well as positron beams so that species dependence can be investigated with CesrTA.

We have actively supported the ILC Reference Design Report of 2007. This proposal supports critical R&D for the the first portion of the ILC Technical Design Phase (ILC TDP-I) through 2010.

The broader impacts of this work are significant. The use of real time measurements for the optimization of beam performance via interactive algorithms has applications in several other areas of research of high complexity. The fast x-ray profile monitors being developed here and the other instrumentation developed for CesrTA will be very useful for synchrotron radiation research and other accelerator applications. Ultra low emittance continuous tuning to be developed will be essential for new synchrotron sources as will mitigation of ECE for electron beams, a now established effect. Of primary importance for the broader impact of this work is the hands-on training of accelerator and x-ray beam line scientists that serve around the world as principals and staff of laboratories for nuclear and particle physics and x-ray science.

Faculty, staff and students participate in a broad gauged program of outreach and education involving graduate and undergraduate students and the general public with special emphasis on K-12. The laboratory’s intellectual and physical resources are used to promote the adventure of science directly to young people as well as to provide workshops and direct support for teachers of science in their own classrooms and in group settings on campus. In addition, we have been collaborating with underrepresented populations in both urban settings of New York City and rural areas here on the edge of Appalachia. Creation of materials for the classroom is also an important part of our work in helping teachers in New York State deal with changing science curricula.
The Conversion and Operation of the Cornell Electron Storage Ring as an International Linear Collider Damping Ring Test Accelerator

1. Introduction

In early 2008 the Cornell Electron Storage Ring (CESR) will conclude nearly three decades of providing electron-positron collisions for the CLEO experiment. At that time it will be possible to reconfigure CESR as a damping ring test accelerator, CesrTA, for the International Linear Collider (ILC) project [2]. With its twelve damping wigglers, CesrTA will offer horizontal emittances in the nanometer range and vertical emittances in the several picometer range approaching ILC damping ring emittances. An important feature of the CesrTA concept is the ability to operate with positrons or electrons. Positron operation will allow detailed testing of electron cloud issues critical for the operation of the ILC positron damping rings [3]. By alternating operation between electron and positron beams, we will be able to carefully characterize and distinguish various species dependent effects in a single ring. Other key features of the CesrTA plan include operation with wigglers that meet or exceed all ILC damping ring requirements, the ability to operate from 1.5 to 5.5 GeV beam energies, a test bed for developing low emittance tuning algorithms and instrumentation, and the availability of a large insertion region for testing damping ring hardware. The evolutionary approach to developing low emittance tuning algorithms along with the development of state of the art survey techniques to correct the positions of the storage ring magnetic elements and the fast x-ray imaging techniques required for measuring these very small vertical beams sizes are essential to the success of the project.

2. Schedule and Budget

This project is designed to match the schedule for the ILC Technical Design Phase (TDP). It is assumed that the budget for operating the storage ring through March 2008 will come from the current Cooperative Agreement (NSF PHY-0202078). This CesrTA proposal will support a proportionate fraction of the operating cost of the storage ring beginning April 1, 2008 and continue through March 31, 2010.

3. Damping Ring Physics and Technical Issues

A number of critical R&D items have been identified by the ILC Damping Rings Group as important research priorities for the next few years. Among the highest priorities on the list are the demonstration of machine correction and tuning techniques to achieve the specified ultra low emittance performance, characterizing the electron cloud build-up in the machine and validating methods to suppress it. By converting CESR to the CesrTA configuration, we expect to provide important data on each of these issues during the first part of the ILC TDP which concludes in 2010. In particular, CesrTA offers a unique opportunity for studying emittance dilution due to electron cloud effects (ECE) at emittances characteristic of the ILC damping rings. In addition, damping ring hardware and instrumentation can be developed and tested with beam in the CesrTA prior to the start of ILC construction.
3.1 Electron Cloud Effects

Clouds of low energy (few eV) electrons are generated in the environment of a circulating charged particle beam primarily by photo-emission from the walls due to synchrotron radiation. In an electron storage ring, the low energy electrons are driven away from the beam while in a positron ring, the electrons are drawn into the path of the beam. The resulting electron cloud can introduce nonlinear focusing and amplitude dependent tuneshifts that contribute to emittance blowup. The electron cloud can also couple transverse motion from one bunch to the next along a train leading to a dipole instability. Passage of the beam through the electron cloud focuses the positron beam and defocuses the electron beam and the electron cloud lifetimes are such that the cloud density typically increases with the passage of the train with a bunch-dependent tune shift appearing as its signature. Emittance dilution begins well before the appearance of the instability [3].

Electron cloud phenomena severely constrain the parameters of the damping ring, including the ring circumference, beam current, bunch spacing, bunch length, vacuum chamber aperture, and ring energy. The maximum beam current in the ring (and therefore the minimum circumference) is limited by the build-up of the electron cloud. Evolution of the cloud and cloud-induced instabilities leading to emittance dilution depend on the bunch spacing. Simulations indicate that the electron cloud effects are more severe as the bunch length increases, whereas, single bunch collective effects tend to be less severe with longer bunches. Sensitivity to the destabilizing effects of the electron cloud scales inversely with ring energy. The growth of the electron cloud depends on the aperture of the vacuum chamber [4]. Multipacting is enhanced by a smaller cross section vacuum chamber. The density of the cloud depends on the chamber geometry and surface chemistry (secondary emission coefficient), local magnetic fields, the characteristics of the positron and electron beams, and generally increases with beam intensity [5]. Thus, the understanding of the electron cloud effect is essential for choosing the right combination of parameters.

To limit electron cloud effects, the addition of an antechamber on the vacuum chamber limits the number of primary photo-electrons that can reach the surfaces in the vicinity of the beam. Grooves or fins that are machined into the chamber can also interfere with the trajectories of secondary electrons that can lead to multipacting, and coatings like TiN can significantly reduce the number of secondary electrons. It is anticipated that methods to control electron cloud growth in the bend, quadrupole and wiggler vacuum chambers will all be necessary to achieve the operating specifications for the damping rings. We plan to test the effectiveness of grooved chambers and surface coatings to suppress the secondary emission yield, along with clearing electrodes that sweep the electrons from the vacuum chamber [6].

There have been measurements of the accumulation of an electron cloud, and the impact of the cloud on the circulating beam in many storage rings [4], but there have been no measurements in a wiggler dominated machine with the high beam current and ultra low emittance characteristic of the ILC positron damping ring. There are currently twelve superconducting high field wigglers in CESR with parameters very similar to those specified for the ILC damping ring. The CESR lattice can be reconfigured for ultra low emittance operation approaching that of the ILC damping ring. In CesarTA we will measure the characteristics of the electron cloud in a damping wiggler vacuum chamber along with the buildup in a bending magnet, quadrupole magnet, and straight vacuum chambers. We will instrument the vacuum chambers in these magnets to measure the dependence of the cloud density, growth rate, and decay time on beam current and bunch configuration and spacing, beam emittance and energy. We will determine thresholds for head tail (emittance blowup) and coupled bunch instabilities as well as emittance dilution below these instability thresholds. The experimental measurements will be accompanied by numerical simulations so that the modeling codes can be benchmarked in a wiggler dominated machine operating in the ILC ultra low emittance regime.
Understanding electron cloud physics in the regime relevant to the ILC positron damping ring is critical if we are to have confidence that the ring design will deliver the requisite low emittance bunches at the lowest possible cost. This project offers the opportunity to measure the properties of the electron cloud in that regime.

3.2 Fast Ion Instability

An electron beam is subject to the effect of the fast ion instability (FII). Ions are created by interaction of the beam with the residual gas molecules. The ions may dilute the emittance of the electron bunch in an electron beam by a mechanism similar to the effect of the electron cloud on the positron bunch in a positron beam [7]. Similarly, ions may couple bunches within a train. The instability threshold depends on the beam configuration, bunch charge density, and residual gas pressure. The FII can dilute the emittance of the electron beam and ultimately limit the bunch and current density of the electron damping ring if not controlled. It will be possible to use the CesrTA to explore the fast ion instability in the emittance, charge density, and beam current regime that is characteristic of the ILC electron damping ring. Our expectation is that most research in this area will take place at other facilities such as the KEK-ATF and we do not intend to have a major effort on this topic.

Ions will oscillate transversely in the field of the electron beam with a frequency that depends on the mass of the ion species and the charge of the electron bunch. The appearance of that frequency in the spectrum of the stored electron beam is a signature of the beam ion interaction. It is anticipated that the ion density will increase along the length of the train of bunches, and CesrTA will be capable of measuring individual bunch sizes, frequency, and tune shifts to further characterize the effect.

Just as the electron cloud physics impacts the design of the positron ring, ion effects have a significant leverage on the specifications of the electron ring, including ring circumference, train length, bunch charge, vacuum chamber aperture and pumping speed. In order to allow the ions to clear it will be necessary that there are gaps between the trains of bunches. Larger circumference permits longer gaps and implies lower current. The bunch train length and the bunch charge may be limited by ion effects. If the total current is fixed, but the number of bunches is increased, then the length of the train increases and the space available for the ion clearing gap shrinks. Finally, the accumulation of ions depends on the residual gas pressure, thereby determining chamber aperture and vacuum system requirements. It is clear that a cost effective design of the electron ring depends on a thorough understanding of ion effects, and that depends on good measurements in the relevant parameter regime [8].

3.3 Ultra Low Emittance Operation

The baseline design for the ILC damping ring beam calls for an extracted geometric horizontal emittance of about 800 pm and vertical emittance of 2 pm. The horizontal emittance is a property of the lattice and depends on near zero residual dispersion in the damping wigglers. The vertical emittance is due to the transverse coupling in tilted quadrupoles, offset sextupoles, and the vertical dispersion generated by tilted bends or offset quadrupoles. The damping ring design requires that the coupling of horizontal to vertical emittance be less than 0.25%. Accelerator physicists at the ATF at KEK have measured a vertical emittance of 4.5 pm at very low bunch intensity \(< 2 \times 10^9 \) electrons/bunch, or about 10% of the design intensity. The measured horizontal emittance in the ATF experiment was about 1.1 nm. The corresponding x-y emittance coupling was about 0.3% [9].

The vertical emittance of a damping ring, provided that the vertical dispersion is negligible, scales as \(\varepsilon_y \sim C_{xy}\varepsilon_x \), where \(C_{xy} \) is the coupling and \(\varepsilon_x \) the horizontal emittance. Minimizing the vertical emittance depends on a careful survey of the magnetic elements, and on beam based correction of the orbit, the vertical dispersion, and the coupling. To maintain operation at the lowest vertical emittance, it will be
necessary to continuously tune the storage ring. For the operation of CESR for high energy physics and
as a light source we use beam based measurements and have developed fitting algorithms to correct the
machine orbits, and to minimize betatron phase and coupling errors and the residual vertical dispersion.
We routinely correct phase errors to less than a degree and coupling errors to a fraction of a percent [10].
The beam based measurement and correction machinery that is used routinely in CESR today is based on
our 25 year experience of operating the storage ring. We will use the same machinery with further
refinement to minimize vertical emittance of the beams via continuous tuning of the test accelerator to the
needed level.

We will exploit low emittance to enhance our sensitivity for the exploration of electron cloud.
Confidence in the design of the damping ring depends critically on an understanding of the sources of
emittance coupling and the development of robust beam based alignment algorithms so that it can be
systematically minimized. CesrTA offers a unique opportunity to demonstrate this.

3.4 Ultra Low Emittance Diagnostics

In order to achieve ultra low vertical emittance and characterize the beam properties in that regime, it is
important to provide suitable machine diagnostics. We plan to continue to develop these techniques so
that they are an integral part of CesrTA operation. Particular areas of R&D include development of a fast
x-ray beam profile monitor that will be capable of bunch-by-bunch and turn-by-turn transverse beam
profile measurements. The high speed detector technology being pursued also offers the potential for
longitudinal bunch-slicing in order to provide beam information in three dimensions. This method offers
much faster response and similar resolution to laser-wire techniques that are being pursued elsewhere. A
second area of development is the methodology for real-time vertical dispersion measurements. The
excellent resolution and fast processing time of the new digital BPM system makes it possible to rapidly
measure the vertical dispersion to high precision by introducing a continuous small energy oscillation in
the beam. Controlling the vertical dispersion in the machine and correcting for slow drifts will be crucial
to maintaining the required emittance in the ILC damping ring. We are presently exploring techniques to
achieve this goal and intend to apply them to CesrTA operations.

We plan to develop continuous tuning techniques capable of taking advantage of the transverse emittance
and dispersion information that is available in real time and to devote significant operating periods to the
task of learning how to maintain the damping ring parameters reliably.

4. CesrTA Design

4.1 Machine Requirements

In order to obtain the smallest possible beam emittance, the CESR-c wigglers need to be located in
regions with zero dispersion. CESR has two 18 m long interaction regions (IR) that meet this criterion.
Figure 1 shows the present location of the CESR-c wigglers and the straight sections in the ring that occur
in each of L0-L5. L0 is the South IR with the CLEO detector while L3 is the North IR the location of the
former CUSB detector. The CesrTA conversion will move six of the twelve wigglers, which are
presently located in the arcs of the machine, to the South IR (L0). The wigglers located in the L1 and L5
straights will remain in place and zero dispersion regions will be created in the local optics at those
places. The move of the six superconducting wigglers to L0 will use the cryogenics support in that region
currently feeding the superconducting IR quadrupole magnets. Two spare wigglers will be used as test
vehicles for testing possible solutions for the vacuum chamber design to limit the buildup of the electron
cloud. These modified wigglers will then be substituted for one or more of the wigglers in the South IR.
This configuration of the wigglers will leave the North IR (L3) available for insertion devices such as
specialized beam instrumentation and potential prototype damping ring hardware testing.
4.2 Operating Parameters

We have designed optics for CesrTA using the TAO program and other tools based on the BMAD accelerator simulation library [11]. Figure 2 shows the optics functions for our baseline lattice design. We have used the flexibility of the individually controlled quadrupoles in CESR to arrive at the key machine parameters that are given in Table 1. The integer horizontal tune in this design has been chosen in order to minimize the emittance. Our goal is a vertical emittance in the 5-10 pm range for use in our

Figure 1. Schematic of the CESR tunnel showing the straight sections located at each of L0-L5 and the present and future locations of the CESR-c superconducting damping wigglers.
beam dynamics studies. Touschek lifetime estimates for the 5 pm case and 2×10^{10} particles per bunch (the ILC design specification) yield a value of order 10 minutes when IBS effects are included.

Table 1: CesrTA Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Wigglers</td>
<td>12</td>
</tr>
<tr>
<td>Wiggler Field</td>
<td>2.1 T</td>
</tr>
<tr>
<td>Beam Energy</td>
<td>2.0 GeV**</td>
</tr>
<tr>
<td>Energy Spread ($\Delta E/E$)</td>
<td>8.6×10^{-4}</td>
</tr>
<tr>
<td>Vertical Emittance</td>
<td>5 – 10 pm</td>
</tr>
<tr>
<td>Horizontal Emittance</td>
<td>2.25 nm</td>
</tr>
<tr>
<td>Transverse Damping Time</td>
<td>47 ms</td>
</tr>
<tr>
<td>Q_x</td>
<td>14.57</td>
</tr>
<tr>
<td>Q_y</td>
<td>9.62</td>
</tr>
<tr>
<td>Q_z</td>
<td>0.075</td>
</tr>
<tr>
<td>Total RF Voltage</td>
<td>8.5 MV</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>9 mm</td>
</tr>
<tr>
<td>Momentum Compaction</td>
<td>6.4×10^{-3}</td>
</tr>
</tbody>
</table>

* Numbers in the table are zero current values.

** CESR can operate from 1.5 GeV to 5.5 GeV.

The equilibrium horizontal emittance obtained for this configuration is 2.25 nm. It is dominated by intrinsic emittance generated by the wigglers themselves. Emittance generated in the wigglers scales in proportion to the value of the horizontal beta function in the wiggler and inversely with the cube of the wiggler bending radius. Further optimization of the lattice and wiggler fields offers the possibility of further reduction of the horizontal emittance to values below those obtained so far.

The dynamic aperture of this optics has been evaluated for fractional energy offsets of 0.5% and 1% and is shown in Figure 3. The tracking code employs the same wiggler map as is used for CESR-c calculations [12]. Particles are considered lost when their amplitude exceeds the real physical aperture. The projected horizontal emittance of the injected beam is ~ 1000 nm. The beam is assumed to be fully coupled so that the vertical emittance is half the horizontal (~ 500 nm). These calculations indicate an acceptable dynamic aperture.
Figure 2. CesrTA Lattice Parameters for 2.0 GeV Operation
Figure 3. CesrTA dynamic aperture for 0.5% and 1.0% energy offsets for 8.5 MV accelerating RF voltage. The elliptical curve corresponds to 3σ of the rms size of the injected beam.

4.3 Magnet Misalignment Tolerances

Our ability to operate CesrTA in the ultra low emittance mode proposed here is strongly dependent on our ability to correct for magnet misalignments. Magnet misalignments in CESR create vertical dispersion and couple horizontal and vertical emittance. In order to achieve the target vertical emittance, the sensitivity to misalignments has been characterized and algorithms for correcting misalignments have been evaluated. Table 2 shows the nominal alignment resolution that we can achieve with existing survey techniques.

<table>
<thead>
<tr>
<th>Element</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>quad, bend, and wiggler offset</td>
<td>150 µm</td>
</tr>
<tr>
<td>sextupole offset</td>
<td>300 µm</td>
</tr>
<tr>
<td>quad, bend, wiggler, and sextupole roll</td>
<td>100 µrad</td>
</tr>
</tbody>
</table>

Simulations have been performed incorporating the random misalignment of elements using multiple seeds. These simulations assume that, with sufficient effort, we can achieve alignment accuracies around the ring which are consistent with our alignment resolution. Figure 4 shows that, with alignment errors at the nominal level of our alignment resolution, the resulting uncorrected vertical emittance in CesrTA would be approximately 140 pm. The dominant sensitivity is to vertical offsets of the CESR quadrupoles.
We are pursuing a two-pronged approach to ameliorate the effects of magnet misalignments. The first seeks to improve our alignment capability by employing improved survey techniques along with more precise positioning mechanisms on our magnet stands. If the overall alignment resolution can be improved by a factor of four, then the uncorrected vertical emittance would drop to ~ 8 pm. The second path is to compensate for the effects of residual magnet misalignments using steering magnets and skew quadrupoles to correct the measured orbit distortion and dispersion. This technique has been evaluated using simulations that take BPM resolution into account. When the distributions of magnet misalignments are set to the nominal values, as given in Table 2, we obtain the corrected vertical emittances that are shown in Table 3. The results of our simulations for 200 random seeds are summarized in Fig. 5. These values are consistent with reaching our target values of 5-10 pm for the vertical emittance.

Table 3: Corrected vertical emittances for magnet misalignments at the level of our nominal alignment resolution

<table>
<thead>
<tr>
<th>Correction Type</th>
<th>Average Value</th>
<th>95% Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit Only</td>
<td>10.2 pm</td>
<td>21.4 pm</td>
</tr>
<tr>
<td>Orbit + Dispersion</td>
<td>3.9 pm</td>
<td>8.2 pm</td>
</tr>
</tbody>
</table>
4.4 The Effect of Intrabeam Scattering

Intrabeam scattering (IBS) [14] will play a significant role in the emittance that can be attained in CesarTA with a bunch charge corresponding to the ILC bunch charge. For our baseline 2.0 GeV lattice with $\varepsilon_x = 2.25$ nm, a 9 mm bunch length, and assuming that the machine has been corrected to achieve a 5 pm vertical emittance in the zero current limit, we find that the horizontal emittance grows by a factor of ~ 2 as we move from the zero current limit to a bunch with 1×10^{10} particles. For an ILC bunch with 2×10^{10} particles, the horizontal emittance is 2.7 times larger than the zero current value. In the limit that the vertical emittance is dominated by coupling, these same growth factors will apply. Since the IBS growth rates scale as γ^4, the emittance blowup can be reduced further by lengthening the bunch, or, at the expense of a slightly larger zero current emittance, moving to a higher energy. We have explored a 2.5 GeV lattice with a horizontal emittance that varies from $\varepsilon_x = 2.85$ nm at zero current to $\varepsilon_x \sim 4.5$ nm at 2×10^{10} particles per bunch. This flexibility to control the operating conditions in CESR gives us confidence that low emittance operation for the beam dynamics tests can be achieved.

5. Primary CESR Conversion Activities

In order to operate the CESR ring as a test accelerator to study the properties of an ultra low emittance damping ring, several ring modifications are required. The core modifications to CESR are:

- Relocation of the CESR-c damping wigglers to regions with zero dispersion.
- Removal of the CLEO solenoid compensation elements and the final focus quadrupoles in the South IR.
- Installation of local diagnostics for measuring electron cloud densities, particularly in and around the dipole, quadrupole and wiggler magnets.
- Installation of the necessary instrumentation to obtain and measure ultra low emittance beams.
- Improvements to CESR alignment and survey capabilities to provide the precision alignment required for ultra low emittance operation.

5.1 Damping Wiggler Relocation to the L0 Straight

As has already been described, six of the current twelve CESR-c damping wigglers can remain in their present locations in the L1 and L5 straight sections of the CESR ring. The remaining six wigglers must move to a region that can be configured for zero dispersion in order to achieve ultra low emittance operation while still preserving the damping time of the ring. For CesrTA, these wigglers will be moved to the L0 straight, the present location of the CLEO detector and the associated IR focusing and compensation magnetic elements. The CLEO detector will remain in place. The following is a list of changes that will be needed in the L0 region:

- Remove the interaction region focusing and solenoid compensation elements. This includes the superconducting quadrupole focusing packages, the permanent magnet quadrupoles located inside of CLEO, and the superconducting anti-solenoids
- Remove the CLEO beryllium beam pipe and drift chambers
- Install all magnets needed for the CesrTA optics
- Install a vacuum chamber that transits the empty bore of the CLEO detector
- Remove the six wigglers that are presently located to the south of the L1 and L5 straights in CESR and move them along with their power supplies to L0 and provide a suitable support and alignment system
- Adapt the existing cryogenics support for the L0 superconducting magnetic elements to provide cryogenic support to the six wigglers.
- Upgrade the vacuum chambers through the L0 straight section with diagnostics to monitor for the presence of the electron cloud throughout the region
- Provide a synchrotron radiation beam dump downstream of the wigglers in the direction of the positron beam by upgrading the present fast luminosity monitor window

As part of the vacuum system upgrade in L0, we expect to install solenoid coils on all of the straight vacuum chambers that are not inside a magnet. We may carry this out for all the additional straight sections of vacuum chamber in CESR if further tests show this to be needed. We intend to install vacuum chambers in this region to explore various ECE suppression methods including NEG coatings, grooved surfaces, and clearing electrodes. This will make this region a flexible electron cloud laboratory for studying ECE suppression techniques intended for use in the ILC damping rings. This will be carried out by laboratory staff under the supervision of Project Director Mark Palmer with some of the materials being supplied by our collaborators from KEK, SLAC and LBNL.

5.2 Modifications to the L3 Straight

Minimal modifications to the equipment in the L3 straight is required for the CesrTA program. Depending on the availability of prototype ILC damping ring components, and the availability of additional funds, this region can be adapted for tests in realistic ILC damping ring conditions.

5.3 Instrumentation
Two key instrumentation upgrades are required as part of the CesrTA conversion. The turn-by-turn beam position monitor (BPM) system currently in use in one sector of the ring will be extended to the full ring. This will provide the needed speed and resolution given the short Touschek lifetimes that will occur as an integral part of ultra low emittance operation. It has been observed at the KEK-ATF that high resolution single-pass beam position measurements offer the best machine correction capability because of lost particles striking the BPM buttons and contaminating the signal if integration over multiple turns is used [15]. Project Director Dr. Mark Palmer will oversee this project.

The second instrumentation upgrade is to provide high resolution beam profile measurements for characterizing the emittance of the beam. For 2 pm vertical emittance and a typical vertical beta functions on the order of 25 m, the typical vertical beam size is approximately 7 µm. Beams this small can be characterized using laser-wire techniques and with synchrotron light beam profile monitors utilizing x-ray wavelengths. This x-ray technique has been used successfully at the KEK-ATF using a relatively slow detector and imaging by means of Fresnel optics [16]. At Cornell, a fast x-ray camera, capable of bunch-by-bunch imaging is presently under development. We propose, with the support of our CHESS colleagues, to complete two camera units and install two x-ray optics lines, employing Fresnel optics, to image the vertical and horizontal beam size for each beam. The cameras will be one dimensional measuring only vertical or horizontal beam size. This camera would have sufficient resolution for use in the ILC damping rings. Having demonstrated the capability of the one dimensional xray beam size monitor, the next step would be to develop a 2-dimensional system, that would simultaneously measure vertical and horizontal beam size. However, with the descoping of the effort we will have insufficient resources to build the 2-dimensional version. The project will be carried out under the supervision of Prof. Jim Alexander.

The streak camera setup for longitudinal beam measurements [17] located in the L3 region will remain in its present location. Prof. Don Hartill and collaborator Prof. Robert Holtzapple from Alfred University will continue to maintain and use this important diagnostic tool.

5.4 Feedback System

In order to understand the ECE with bunch spacing comparable to the 3.08 ns bunch spacing specified for the ILC damping rings, we will operate CESR with 4 ns bunch spacing. In order to evaluate the damping requirements of the feedback system, a review of observed instabilities in the ring has been conducted. The impedance of the CESR has been studied with measurements and simulations over the course of its operations. A review of these measurements indicates that transverse dipole feedback systems for horizontal and vertical motion with damping rates larger than 40 m/s m⁻¹ will stabilize a beam with 4 ns bunch spacing and required beam current. A system based on an extension of our current system can achieve this requirement. The system will include the capability of damping either electron or positron trains of bunches in both horizontal and the vertical planes. It will employ analog processing of beam position monitors with variable gain low level amplifiers driving the power amplifiers connected to the present CESR feedback kickers. The system is specified to operate with exponential damping for a maximum of 1.5 x 10¹¹ particles per bunch with oscillation amplitude < 5 mm. In order to keep the bunch-to-bunch coupling sufficiently low, wider bandwidth power amplifiers may be required. This is currently under study. Dr. Robert Meller will supervise this upgrade.

Longitudinal bunch lengthening of order of 10% for 9 mm bunch lengths in the neighborhood of 2 x 10¹⁰ per bunch has been observed. Although this is not a large effect, by adjustment of the momentum compaction and the RF accelerating voltage, a constant bunch length can be maintained for typical experiments. The existing longitudinal feedback will be upgraded to suppress any potential longitudinal dipole or quadrupole instabilities.
5.5 RF System

With the present four CESR superconducting radio frequency (SRF) cavities in the ring, the total available RF voltage is approximately 10MV. These cavities will allow us to achieve a bunch length of 9 mm, the current ILC damping ring design bunch length.

5.6 Alignment and Survey Systems

As has already been described, maintenance of the CesrTA magnet alignment at the limit of our present alignment resolution is critical for ultra low emittance operations. We plan to purchase a laser tracker and to install nests on all of the quadrupoles that accept spherical targets, in order to improve the speed as well as accuracy of the machine survey. We also plan to upgrade the magnet support hardware to simplify realignment. Ultimately, this effort will be important in helping CesrTA attain its target emittances as well as helping to specify the alignment and survey systems required for the ILC damping rings.

5.7 Magnets and Power Supplies

Simulation studies of low emittance tuning indicate that our present complement of corrector magnets should be satisfactory for CesrTA operations. Magnets required for the reconfiguration of the L0 and L3 regions are all available in our present inventory. We will upgrade the alignment mechanism on all of our quadrupole tables by early 2009 to improve the resolution with which we can position these magnets.

We are presently evaluating the impact of power supply stability and corrector zero-crossover issues on ultra low emittance operations. The bulk power supplies for the quadrupoles and correctors will be upgraded to reduce the ripple that has caused tune fluctuations in the past. Prof. Hartill will be responsible for the magnet power supplies.

6. Research and Development Program

6.1 CesrTA Research Program

Our proposed research program will address several key ILC damping rings R&D issues before the conclusion of the ILC TDP-I in 2010. ILC Damping Rings R&D objectives have been evaluated by the S3 task force, appointed by the ILC Global Design Effort (GDE) R&D board, and rated as low, moderate, high, or very high priority [18]. A list of objectives identified as very high or high priority, to which our research program directly contributes, includes:

- Characterization of the electron cloud build-up (including its impact on emittance performance) and methods to suppress it, particularly in the wiggler sections (very high)
- Demonstration of the specified damping ring vertical emittance (very high)
- Develop strategies for low emittance tuning (high)
- Specify requirements for survey, alignment and stabilization (high)
- Specify orbit and coupling correction scheme (high)
- Specify vacuum chamber material and geometry (high)
- Develop engineering designs for damping wiggles (high)
- Develop instrumentation for monitoring emittance damping (high)
- Specify overall requirements for instrumentation and diagnostics (high)

The following sections describe how the CesrTA project will contribute to this critical R&D effort required in order to develop a robust design for the ILC Damping Rings.
Prof. Dave Rubin and Dr. Mark Palmer will organize the CesrTA research program and will be assisted in carrying out the measurements by our collaborators from Alfred, ANL, KEK, LBNL, SLAC, and Cornell Faculty and staff. We are also exploring the possibility of collaboration with accelerator physicists at FNAL (Project X) and BNL (NSLS II).

6.1.1 Electron Cloud Studies

The CesrTA program offers unique opportunities for ECE research as part of the ILC TDP-I. In particular we can:

- Study the growth and suppression of the electron cloud in damping wigglers meeting ILC specifications, and compare the simulations for electron cloud growth with experimental observations.
- Study EC growth and suppression in dipole, quadrupole and drift regions.
- Study the impact of the electron cloud on the dynamics of ultra low emittance beams and compare with simulations to predict the performance of the ILC damping rings.

The R&D program will begin with the deployment of electron cloud diagnostics in a set of dipole and drift chambers in early 2008. The performance of these diagnostics and the EC growth in the chambers will be characterized during a June 2008 experimental run.

The R&D program for the damping wiggler vacuum chambers will begin with the replacement of the vacuum chambers in two spare CESR-c 8-pole wigglers with instrumented chambers that will be built as part of the collaboration between KEK, SLAC, LBNL and Cornell. The two new chambers will have segmented retarding field analyzer (RFA) detectors on their top surfaces. One chamber will serve as a control while a TiN coating to suppress the electron cloud will be employed in the second chamber. During the course of the R&D program we will also test clearing electrodes and grooves as suppression methods in additional wiggler vacuum chambers. The first two wigglers will be installed in mid-2008 with the first dedicated measurement to take place shortly thereafter. After the major ring upgrade in the middle of 2008, the L0 “electron cloud laboratory” will provide a dedicated region with wiggler, quadrupole, and drift regions instrumented with RFAs for studying local electron cloud growth. We will instrument the vacuum chambers in each of these elements to measure electron cloud growth using retarding field analyzers. We, along with our collaborators from ANL, KEK, LBNL, LLNL, and SLAC will then carry out detailed comparisons between simulation and experiment to validate our understanding of the electron cloud growth issues during the TDP period. A special focus of the program will be to measure the EC growth in damping wigglers meeting the ILC specifications and evaluate the performance of the proposed suppression techniques (vacuum chambers with grooved surfaces and clearing electrodes). We will work closely with our collaborators at KEK, SLAC and LBNL to finalize the necessary technical designs during TDP-I.

In order to understand the impact of the electron cloud on ultra low emittance beams we will study the beam dynamics of a witness bunch trailing a train of positrons that serves as a generator of the electron cloud [19]. By varying the intensity of the leading train, the distance of the witness bunch from the train, the properties of the witness bunch (e.g., its charge and emittance) and the beam energy, we will be able to study, in detail, the impact of the electron cloud on the witness bunch dynamics and measure the emittance-diluting impact of the cloud. We have implemented a range of bunch-by-bunch instrumentation (e.g., tune measurements, beam position and profile monitors) that is presently in use for ECE studies at CESR [20]. We will continue to develop these techniques and extend them to the low emittance bunches and 4 ns bunch spacings of CesrTA. We, along with our collaborators, expect to deliver initial results from our beam dynamics studies by the end of 2009 and the results of more
thorough studies in 2010 as part of an ongoing effort to obtain the lowest possible vertical emittance in CesrTA.

6.1.2 Fast Ion Instability

The ability to operate CesrTA with either electrons or positrons provides a probe of the impact of ions on ultra low emittance beams. We can explore this with trains of electrons having 4 ns spacing and a variable gap between trains so that ions are cleared once the train passes by. In order to characterize the impact we can measure bunch-by-bunch tune and beam size. We can calculate the characteristic frequencies for ions likely to occur in the residual gas and measure the amplitude of these frequencies in the beam spectrum and correlate these with RGA measurements. We can measure the response of the beam spectrum to changes in pressure, for instance by turning off pumps or deliberately increasing the partial pressure of a particular gas (ALS added He to see the effect) [21] and explore the dependence on bunch current, bunch spacing and emittance. Comparison of the data with the theoretical expectations and simulations can be used to benchmark the models used in the design of the ILC damping rings.

While the instrumentation will be in place to investigate fast ion physics with CesrTA, we anticipate that, in view of the descoping of the proposal necessitated by the funding profile, we will be unable to provide the intellectual resources to exploit that capability. However, we will pursue collaborations within the damping ring and ultra-low emittance light source communities, in an effort to leverage the CesrTA infrastructure to make a significant contribution to our understanding of the fast ion effect.

6.1.3 Ultra Low Emittance Operation and Associated Beam Diagnostics

As was described above, the simulations of our ability to correct the optics in CesrTA indicate that we can attain vertical emittances that approach the specifications of the ILC damping rings. Our collaborators at the Cockroft Institute and SLAC have expressed interest in helping us achieve this goal. Although our expectation is that experiments at the KEK-ATF with its electron beam will continue to play the lead role in initially demonstrating the specified damping ring vertical emittance, the ability to achieve similar emittance goals at CesrTA is complementary in the overall damping ring R&D program. Because CesrTA has beams of both positrons and electrons, exploring the emittance-diluting effects of the electron cloud is a unique aspect of the proposed program. Work at CesrTA will also support the development of additional correction and tuning techniques along with hardware as the KEK-ATF moves into a period of supporting beam delivery system research as part of ATF-II.

Our collaborators at FNAL have expressed interest in providing beam dynamics simulation support (both manpower and computing) to help model the electron cloud, ion effects, intrabeam scattering, and other beam dynamics effects on ultra low emittance beams. Implementation of real-time techniques and algorithms for dispersion and emittance measurement and the development of suitable methods to use this information for continuous tuning and correction of the machine will take place primarily during 2009 and 2010 with continuing development beyond as required. Collaboration with NSLS II accelerator physicists will be sought.

6.1.4 ILC Damping Ring Component Prototyping and Testing

Beginning in late 2009, CesrTA will be available to test prototype systems for the ILC damping rings. In order to properly characterize these systems, the ability to operate at ultra low emittance will be a prerequisite. We plan to test vacuum chambers for suppressing electron cloud in an ILC damping ring like wiggler and in a damping ring-like beam environment. SRF cavities, fast kickers, a prototype wiggler, and other damping ring instrumentation supplied by others could be tested as well, given the availability of supplemental support.
Table 4: Letters of interest for CesrTA collaboration for ILC damping ring research.

<table>
<thead>
<tr>
<th>Collaborators</th>
<th>Institution</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Pivi and L. Wang</td>
<td>SLAC</td>
<td>Electron cloud studies, wiggler chambers for electron cloud suppression</td>
</tr>
<tr>
<td>Y. Cai and PEP-II Beam Physics Group</td>
<td>SLAC</td>
<td>Machine correction and ultra low emittance tuning</td>
</tr>
<tr>
<td>S. Marks, R. Schlueter and M. Zisman</td>
<td>LBNL</td>
<td>Wiggler chambers for electron cloud suppression</td>
</tr>
<tr>
<td>C. Celata, M. Furman and M. Venturini</td>
<td>LBNL</td>
<td>Simulation of electron cloud in wigglers</td>
</tr>
<tr>
<td>A. Molvik</td>
<td>LLNL</td>
<td>Electron cloud measurements</td>
</tr>
<tr>
<td>J. Byrd, S. de Santis, M. Venturini, and M. Zisman</td>
<td>LBNL</td>
<td>Wiggler and electron cloud and FII studies</td>
</tr>
<tr>
<td>K. Harkay</td>
<td>ANL</td>
<td>Electron cloud measurements</td>
</tr>
<tr>
<td>P. Spentzouris, J. Amundsen and L. Michelotti</td>
<td>FNAL</td>
<td>Beam dynamics simulations and measurements</td>
</tr>
<tr>
<td>A. Wolski</td>
<td>Cockcroft Inst.</td>
<td>Machine correction and ultra low emittance tuning</td>
</tr>
<tr>
<td>R. Holtzapple</td>
<td>Alfred Univ.</td>
<td>Instrumentation and beam measurements</td>
</tr>
<tr>
<td>J. Urakawa</td>
<td>KEK</td>
<td>R&D program coordination</td>
</tr>
<tr>
<td>L. Schächter</td>
<td>Technion-Haifa</td>
<td>Electron cloud measurements and analysis</td>
</tr>
</tbody>
</table>

8. ILC Schedule and Milestones

The CLASSE ILC research program is specifically designed to answer key questions as part of the ILC Technical Design Phase (part I) and subsequently to support validation of key ILC accelerator and detector technologies. Figure 9 shows the schedule for operating CesrTA for damping ring physics studies.
Figure 9. Proposed CesrTA Operating Schedule for 2008-2010: CesrTA runs are shown in light green, Cornell High Energy Synchrotron Source (CHESS) runs are shown in blue, and machine downs are shown in gray. The end of CESR-c/CLEO-c operations is March 31, 2008. During the CesrTA period, CHESS runs will continue for synchrotron light users (contingent on funding).

The following is a list of key R&D milestones for the ILC research program at CLASSE.

2008:

- Install the first fully instrumented CESR chambers during May down period. Conduct first physics experiments in June to measure the electron cloud growth in these modified dipole and drift vacuum chambers (see Sect. 6.1.1). Initial tests will take place before any other ring modifications occur. Expectations are that we will be operating with a horizontal geometric emittance of ~ 10 nm and vertical emittances of several hundred picometers, significantly higher than our final targets. The beam current for 4 ns spacing bunch train operation will likely be limited by the longitudinal multi-bunch instability.
- Move the damping wigglers and reconfigure the CESR ring for compatibility with the ultra low emittance lattice during July-September down (see Sect. 5). The theoretical horizontal emittance in this configuration is ~2.25nm. Install the first wiggler chambers with EC diagnostics and suppression hardware, measure the EC growth and the efficacy of the suppression methods in these chambers during the second CesrTA experimental run.
- Begin the beam-based and instrumental alignment program to reduce transverse coupling and vertical dispersion. Until this upgrade is completed the program to reduce vertical emittance will be limited by the existing BPMs and our traditional survey and alignment instrumentation. (see Sect. 6.1.3).
- Prepare the optics line for the x-ray beam size monitor for the positron beam.
- Begin experiments at low emittance to explore emittance dilution and instability thresholds due to electron cloud.
- Commission the x-ray beam size monitor for the positron beam (see Sect. 5). (There is no contingency in our schedule for the design and construction of the x-ray beam size monitor and commissioning may stretch out into 2009)

2009:

- Complete the upgrade of the BPMs and the longitudinal feedback for 4ns capability.
- Install the optics line and commission the electron beam size monitor (see Sect 5) (As in the case of the positron x-ray beam size monitor, commissioning may stretch out into early 2010.)
- Measure emittance dependent and emittance diluting effects associated with the ECE, and IBS. Compare observations with current models and evaluate the expected ILC Damping
Ring performance (see Sect.6.1-6.3). The new BPMs and survey equipment, and the experience gained with beam based alignment techniques during the previous year, will enable us to further reduce the vertical emittance. The x-ray beam size monitor will provide the capability to measure the very small beam size and provide tuning feedback.

- Install new vacuum chambers for monitoring the electron cloud in wigglers, dipoles, quadrupoles and drift regions.
- Carry out further measurements of electron cloud growth and tests of electron cloud suppression techniques with bunch trains consistent with the ILC design specifications. Prepare evaluations for the ILC TDP-I (see Sect. 6.1).

2010:

- Establish optimal emittance tuning algorithms and limits and evaluate the beam species dependence of the emittance performance (see Sect. 6.1, 6.2, and 6.3).
- Circulate beams of both electrons and positrons with emittance, bunch and charge configuration as near to the ILC damping ring specifications as we have been able to achieve, and measure thresholds for instability and emittance growth.
- Provide ILC TDP contributions.

Figure 10. below is a GANTT chart of these activities to illustrate in a graphical way the sequence of steps that the evolving research program for the CesrTA will follow. This combined with the proposed operating schedule given above in Figure 9 gives the complete picture of the laboratory operations during the CesrTA project.

<table>
<thead>
<tr>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr</td>
<td>May</td>
<td>Jun</td>
</tr>
<tr>
<td>Preparation for Ring Reconfiguration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downs with Upgrades/Modifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CesrTA Runs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Emittance Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPM System Upgrade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positron Beam Size Monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Beam Size Monitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey and Alignment Upgrade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Cloud Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumented Vacuum Chambers w/EC Mitigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback System Upgrade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon Stop for 5 GeV Wiggler Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC Growth Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam Dynamics Studies at Low Emittance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. CesrTA Project Management

The Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) provides an infrastructure for the management of parallel but interrelated projects based on accelerators. The structure is shown below in Figure 10. Besides the evident connection to the university administration, other essential connections are made through the fact that many of the principals are Cornell faculty: the Chair of the Directorate, the two Scientific Directors and, in the present instance, the PI for this proposal who is the senior faculty person for accelerator physics, David Rubin. These connections make possible the all important student (undergraduate, graduate and post doctoral) involvement for education, training and research opportunity. In addition, they give access to the intellectual resources in the wider university community – engineering, IT, chemistry, condensed matter physics as well as important administrative units within the university such as Personnel, Office of Sponsored Programs and the
Dean’s and Provost’s offices. Other accelerator faculty are also involved as co-PI’s: Gerald Dugan, Don Hartill, and Maury Tigner. Connection to the organization’s technical infrastructure and operating capability is provided through the Technical Director, David Rice, who manages the engineering, technical services and operations personnel. The Project Director is Mark Palmer, also an accelerator physicist with expertise in instrumentation. He is concerned with planning as well as operational matters concerned with doing the measurements and system investigations proposed herein. He is responsible for creating and maintaining the relevant project WBS and using Microsoft Project for schedule projection and tracking.

Fig. 10. CLASSE Organization Chart showing Faculty and Senior Administrators

10. Project Summary

Use of the CESR physical and intellectual infrastructure for R&D in support of the ILC Engineering Design Report and preparation for developments beyond, offers a unique opportunity to capitalize on existing EPP community resources. Local experience with elements of the positron source through the damping rings and the ring to main linac transport with its complex optics and superconducting accelerator sections is an almost perfect match to ILC R&D needs. The centerpiece of these activities is the application of the CESR ring to study of the Electron Cloud Effect and potential methods for their amelioration in long-period dedicated runs of the accelerator. Ancillary to this is the program to implement ultra low emittance operation through significant improvements in alignment, instrumentation, and tuning procedures. The natural suitability of CESR as a laboratory for these studies has attracted collaborators from the three regions participating in the ILC, adding to the strength of what is being proposed. The layout of the accelerator is also such that various prototypes of subsystem hardware can be inserted and tested as the ILC design develops. The intermingling of the several activities proposed gives advantage of a wider circle of scientific and technical experience that can be shared among them to the benefit of all.
11. Broader Impact

11.1 ILC Global and Regional Management Collaboration Activities

ILC activities are globally coordinated by the GDE with its central and regional management units, accountable to the supporting agencies in the three regions. Cornell faculty and staff are heavily involved in the management and coordination of these international activities. Currently G. Dugan serves as the Regional Director for the Americas (through April 2007), M. Tigner is past chair of the International Linear Collider Steering Committee (ILCSC) and currently serves as chair of the Linear Collider Steering Group of the Americas (LCSGA), M. Palmer serves as a member of the Americas Regional Team as Deputy Manager for the Damping Rings as well as being a member of the Global R&D Task Force S3 (damping rings). D. Hartill serves as a member of the ILC Machine Advisory Committee. H. Padamsee is a member of the Global Design Effort (GDE), a member of the GDE R&D Board and Co-leader of the combined Cavity and String Test Task Forces S0/S1, co-leader of the S2 Task Force, and co-leader of the WBS X.9 collaboration for ART. R. Meller serves as Cornell Representative to the International Collaboration Board for the ATF at KEK (see letters of support).

11.2 Scientific and Technical Impacts

The accelerator physics and technology of ultra low emittance tuning and, electron cloud effects for both positron and electron beams have significant impact well beyond the damping rings for the ILC.

The current generation of light source storage rings under construction and in design depend on achieving low emittances without precedent, similar to that required for the ILC damping rings. Thus all methods being developed for achieving and maintaining low emittance in the ILC damping rings are relevant to current developments in light source design and operation. The beam currents being planned for the most recent storage ring based light sources are also comparable with that of the ILC damping rings. Thus, mitigating the electron cloud phenomenon and its impact on diluting emittances of both electron and positron beams is particularly germane to these light sources as well. The instrumentation being developed for the emittance tuning and electron cloud studies will also be useful for next generation light sources. In particular one notes the fast bunch by bunch x-ray beam size camera being developed in collaboration with x-ray scientists and the high resolution beam position monitor electronics and software.

The understanding of electron cloud effects associated with positive ion beams is also important for heavy ion fusion studies [22] and storage rings for neutron sources.

Not only will the CesrTA studies alluded to above produce substantial knowledge relevant to the broader fields mentioned, the diverse participation of the CesrTA program attested to by the attached letters will assure that this information is widely available at the potential points of use.

Of primary importance in broader impacts of this work is the hands-on training of accelerator and x-ray beam line scientists that serve around the world as principals and staff of laboratories for nuclear and particle physics and x-ray science.

11.3 Outreach

As part of this proposal we plan to continue our past level of commitment to outreach, an important aspect of scientific research. Faculty, students and staff in Laboratory for Elementary-Particle Physics (LEPP) have demonstrated a firm commitment to outreach and are pleased to be part of a global
movement to advance efforts that promote science literacy. We are committed to providing graduate students with access to frontier research facilities and to provide the training necessary to meet the growing demand for experts in accelerator-based technologies. We have developed undergraduate programs that offer students the opportunity to contribute to projects involving cutting-edge research and technology. We have devoted significant resources and staff-time connecting with K-12 students, educators, and the public to share with them the technological and scientific advancements made possible through research conducted at particle accelerator facilities.

11.3.1 Graduate Programs

The average population of PhD students in experimental elementary particle and accelerator physics is 22 with 9 currently in accelerator physics and 13 in EPP. Roughly one PhD per year is granted in each of particle and accelerator physics. As noted, our students are in great demand in accelerator and particle physics laboratories. The growing use of accelerators and the size of accelerator projects has resulted in demand outstripping supply. We will continue our efforts to recruit exceptional talent into graduate work in the accelerator based sciences.

11.3.2 Undergraduate Programs

The Laboratory has been able to involve both undergraduates and high school students in research activities. Since 2003, ten high school students have participated in voluntary internship programs at the Lab where they have worked with mentors on a variety of accelerator-based research projects. The Lab employs between 30-35 undergraduate students each year, in part-time and full-time summer positions. Ten members of Cornell’s Society for Physics Students have actively participated in after school enrichment programs for middle and elementary school students sponsored by the Lab during the past three years. The SPS Chapter at Cornell received the Blake Lilly Award for their outstanding efforts to positively influence the attitudes of school children.

The Laboratory has hosted 153 REU students and 17 RET participants since the summer of 1998 in collaboration with Wayne State University. Wayne State is located in inner-city Detroit, providing us with a pool of accessible minority candidates to participate in the program. During the summer of 2006, three students participating in the Cornell REU program were involved in investigating important aspects of damping ring physics, an integral part of the proposed International Linear Collider (http://www.lepp.cornell.edu/Research/AP/ILC/WebHome.html). Mentors for the 2007 REU program at the Lab are already planning research projects for the incoming students that include further investigation of damping ring dynamics using the CESR ring. See the ILC news line article at: http://www.linearcollider.org/newsline/readmore_20061005_feature1.html

11.3.3 Outreach to the Community

In addition to sharing our sense of wonder over the elegant beauty of the universe, future outreach efforts at the Lab will convey the excitement surrounding upcoming discoveries in particle physics. New particle accelerators with their ingenious designs and high energies will play an important role in unraveling the mysteries of the universe. By describing these and the anticipated physics discoveries, we will attempt to convey to our outreach audience the knowledge and understanding made available through the collaborative research efforts using the LHC and ILC.

Over 1000 people visit and tour the Lab each year, representing an audience interested in learning about the behavior of the subatomic world and the machines that allow us to observe these fundamental particles. In 2006, approximately 525 middle/high school students received guided tours and 85 middle/high school teachers toured the Lab. These numbers, higher than those in 2005, indicate that the
Visits to area schools provide children with the opportunity to learn about science topics beyond those addressed in the adopted classroom curriculum and allow laboratory staff to share their knowledge and unique perspectives with an audience that might not ever walk onto a university campus. Our connections with New York City’s public school children have increased our contacts with under-represented students during the last few years. This coming July, we will be collaborating with the Center for Radiophysics and Space Research to host the Cornell Physical and Space Sciences Summer Institute. This institute will provide New York City middle school teachers with the opportunity to gain content knowledge aligned with the NY City Science Standards and the NY State Learning Standards. Participants will interact with scientists conducting cutting-edge research in accelerator science and learn about state-of-the-art technology in the setting of a world-class research university.

11.3.4 Outreach to Science Educators

In 2006, thirty-five physics educators from throughout the country assembled at Cornell to discuss the crisis in physics education as part of the Lab-sponsored “Preparing Future Physics Teachers” conference. Physics faculty from university, state and community colleges shared their concerns and strategies for recruiting, training and retaining future high school physics teachers. As a result of the conference, the Lab produced a recruitment brochure encouraging high school seniors and undergraduates to consider a career as a high-school physics teacher. The Physics Department at Cornell has become part of the Physics Teacher Education Coalition (PTEC), an association of institutions of higher education dedicated to the improvement of physics and physical science teacher education.

As state-wide physics test scores come under continued scrutiny and as the number of high school students taking physics is at the 30% level nationally, we have hosted two conferences devoted to exploring the advantages of changing the current high school science curriculum to determine if teaching conceptual physics in ninth grade to all students is beneficial to young learners. We continue to be a resource to school administrators and teachers who are interested in implementing Physics First in their own high schools.

The NY State Education Department with the National Science Resources Center is implementing a science education initiative that will build leadership within NY State school districts. The initiative will provide research-based products and services to assist NYS school districts in initiating, implementing, and sustaining effective inquiry-centered pre-K-12 science programs for all students. The Lab’s Director of Educational Programs is serving on one of the Enhancing Collaborative Leadership for Improved Performance in Science Education (ECLIPSE) leadership teams committed to developing a model that provides a comprehensive approach to district-wide systemic change in science education.

The Lab is an active participant in the international collaboration InterActions, whose members are representative of the world’s particle physics laboratories. The main purpose of the collaboration is to communicate important information to policy makers, serve as a resource for communicators of particle physics, and to link the public to particle physics education and outreach material. Information about the ILC is an important component of these activities.

12. References

5. M.Pivi et.al., Recent Electron Cloud Simulation Results for the Main Damping Rings of the NLC and TESLA Linear Colliders, LBNL-52710, p. 2.

11. D. Sagan, et al., BMAD - a Subroutine Library for Relativistic Charged-Particle Simulations, and TAO - a Program for Relativistic Charged-Particle Simulations, available online at http://www.lepp.cornell.edu/~dcs/bmad

15. J. Urakawa, private communication.

