Some Alignment and Instrumentation Issues for CESR as a Damping Ring Test Facility

M. Tigner, R. Helms, M. Palmer, D. Rubin, D. Sagan
Cornell University
Laboratory for Elementary-Particle Physics
Primary Goals

- Electron cloud measurements
 - e^{-} cloud buildup in wigglers
 - e^{-} cloud amelioration in wigglers
 - Instability thresholds
- Ultra-low emittance
 - Study emittance diluting effect of the e^{-} cloud on the e^{+} beam
 - Detailed comparisons between electrons and positrons
 - Also look at fast-ion instability issues for electrons
 - Alignment issues and emittance tuning algorithms
 - Beam dynamics issues (including energy dependence 1.5 to 5.5 GeV operation)

Secondary Goals

- ILC DR hardware testing
Low Emittance Lattice Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiggler</td>
<td>12 @ 2.1T</td>
<td></td>
</tr>
<tr>
<td>Beam Energy</td>
<td>2.0 GeV</td>
<td>Will explore low ε designs in the 1.5-2.5 GeV range</td>
</tr>
<tr>
<td>$\sigma_{E/E}$</td>
<td>8.6×10^{-4}</td>
<td></td>
</tr>
<tr>
<td>ε_x</td>
<td>3.0 nm</td>
<td>Wiggler-dominated value. Further reduction possible with β function (in wigglers) and wiggler field tuning and/or fewer active wigglers</td>
</tr>
<tr>
<td>$\tau_{x,y}$</td>
<td>47 ms</td>
<td></td>
</tr>
<tr>
<td>Q_x</td>
<td>14.53</td>
<td></td>
</tr>
<tr>
<td>Q_y</td>
<td>9.59</td>
<td></td>
</tr>
<tr>
<td>Q_z</td>
<td>0.1</td>
<td>Requires higher RF voltage than we typically use</td>
</tr>
<tr>
<td>σ_z</td>
<td>6.9 mm</td>
<td></td>
</tr>
<tr>
<td>α_c</td>
<td>7.1×10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>
Further Parameter Information

- **Energy:** 1.5 to 5.5 GeV

- **Bunch Spacing:**
 - Presently use 14 ns
 - Can use alternating 6ns, 8ns scheme with activation of existing parallel feedback systems
 - Intend to explore 2ns and/or 4ns option if needed for ILC DR studies

- **Touschek Lifetime**
 - In ultra-low emittance operation expect lifetimes of a few to several minutes
Low Emittance Lattice Functions

Wiggler Insert Regions

Note E-W Asymmetry
Vertical Emittance Estimates

- Beam-Beam Scan with low current 1-on-1 Collisions in 1.88 GeV HEP Conditions (with pretzel)
 - Differential vertical displacement controlled by phase advance between vertical separators in North
 - Fast Luminosity Monitor provides measurement of overlap
 Peak $\Rightarrow 8.4 \times 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$
- Measure $\sigma_y = 2.66 \mu$m
 (with $\beta_y^* = 11.2$ mm and $\varepsilon_h = 136$ nm)
 \Rightarrow $\varepsilon_y = 0.63$ nm
 \Rightarrow $\varepsilon_y / \varepsilon_x \sim 0.005$

Vertical Emittance Estimates from Coupling Contribution:
With $\varepsilon_x = 3.0$ nm $\Rightarrow \varepsilon_y \sim 15$ pm
With $\varepsilon_x = 2.0$ nm and $\varepsilon_y / \varepsilon_x \sim 0.0025$ $\Rightarrow \varepsilon_y \sim 5$ pm
Likely improvement without CLEO solenoid and pretzel!
South IR Extraction Line Option

~40 m available for possible extraction line and diagnostics

~18 m South insertion region for diagnostics and test devices
Emittance Measurement

• High resolution transverse size measurements
 – Laserwire
 – Also working on x-ray beam profile monitor

• Desired laserwire capabilities
 – Bunch-by-bunch capability
 • Possibly 2 ns to 14 ns bunch spacing
 – Fast measurement
 • Touschek lifetimes are short (minutes)
 – Resolution suitable for $\sigma_y \sim 10 \, \mu m$
• Expected beam sizes
 – Vertical assumes perfect dispersion correction
 – Values at center of South IR:
 • $\sigma_y \sim 11.6 \, \mu m$
 • $\sigma_x \sim 79 \, \mu m$
 • Compton scattering from the positron beam can be viewed through the present CESR-c luminosity monitor window
Luminosity Monitor Window

- Aluminum γ Window
 - Faces into South IR
 - 1 in thick ($0.26 \times_0$)
 - 16.1 m from center of CesrTF insertion region
 - Looks at e^+ beam
 - Aperture (for 16.1 m):
 - ± 1.5 mrad vertical
 - -5 to +2 mrad horizontal
 (negative is to inside of ring)
Radiative Bhabha γ Detector

\Rightarrow Compton γ Detector?

- **Segmented Scintillator Detector**
 - Offers possibility of measuring the Compton photon angular distribution
 - Fast R7400 PMTs offer bunch-by-bunch response
 - Well-understood operation

![Diagram of Segmented Scintillator Detector]

Vertical
- $\sigma = 0.96$
- $\mu = 0.06$
- Rate = 28595

Horizontal
- $\sigma = 1.01$
- $\mu = 6.00$
- Rate = 6353
Some Laserwire Discussion Points

• Beam sizes are comparable to ATF
• ATF scanning times seem somewhat long given the short beam lifetime and questions of stability
 – 6 minutes for y scan
 – 15 minutes for x scan
 – Can we consider a system with sufficient power on the beam to complete a scan with $\Delta t < \tau_{\text{Touschek}}$?
• CW laser system with fast detector versus pulsed laser system
 – What are pros and cons?
 – What are the costs?
CesrTF Alignment Sensitivity Estimates

- Analytical estimates using CesrTF parameters
- Utilize A. Wolski’s procedures in his DR evaluation note
- Make rough sensitivity estimates for comparison purposes
- Some sources of vertical emittance
 - Vertical steering \Rightarrow vertical dispersion
 - Betatron coupling from horizontal to vertical
 - Horizontal dispersion coupled into vertical
- Closed orbit errors from quadrupole misalignments
 - Sensitivity: RMS quad misalignment to give a vertical orbit distortion equal to the beamsize for the target emittance (5 pm in our case)

$$\frac{\langle y^2 \rangle}{\langle \sigma_y^2 \rangle} \approx \frac{\langle \Delta Y_q^2 \rangle}{8 \varepsilon_y \sin^2 \pi \nu_y} \sum_{1O}$$

$$\sum_{1O} = \sum_{\text{quads}} \beta_y (k_1 L)^2$$
Alignment Sensitivity Estimates (cont’d)

• Coupling and dispersion from quadrupole rotations
 – Sensitivity: RMS quadrupole rotation to generate the target vertical emittance

\[
\frac{\varepsilon_y}{\langle \Delta \Theta_q^2 \rangle} \approx \frac{J_x}{J_y} \frac{1 - \cos 2\pi \nu_x \cos 2\pi \nu_y}{(\cos 2\pi \nu_x - \cos 2\pi \nu_y)^2} \varepsilon_x \Sigma_{1C} + \frac{J_x}{J_x} \frac{\sigma^2_\delta}{\sin^2 \pi \nu_y} \Sigma_{1D}
\]

\[
\Sigma_{1C} = \sum_{\text{quads}} \beta_x \beta_y (k_1 L)^2 \quad \Sigma_{1D} = \sum_{\text{quads}} \beta_y \eta_x (k_1 L)^2
\]

• Coupling and dispersion from sextupole misalignments
 – Sensitivity: RMS sextupole misalignment to generate the target vertical emittance

\[
\frac{\varepsilon_y}{\langle \Delta Y_s^2 \rangle} \approx \frac{J_x}{J_y} \frac{1 - \cos 2\pi \nu_x \cos 2\pi \nu_y}{4(\cos 2\pi \nu_x - \cos 2\pi \nu_y)^2} \varepsilon_x \Sigma_{2C} + \frac{J_x}{J_x} \frac{\sigma^2_\delta}{4 \sin^2 \pi \nu_y} \Sigma_{2D}
\]

\[
\Sigma_{2C} = \sum_{\text{sexts}} \beta_y \beta_x (k_2 L)^2 \quad \Sigma_{2D} = \sum_{\text{sexts}} \beta_y \eta_x (k_2 L)^2
\]
Lattice Comparisons

<table>
<thead>
<tr>
<th></th>
<th>CesrTF</th>
<th>ATF</th>
<th>TESLA</th>
<th>ILC 6 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference (m)</td>
<td>768</td>
<td>139</td>
<td>17000</td>
<td>6114</td>
</tr>
<tr>
<td>Energy (GeV)</td>
<td>2.0</td>
<td>1.28</td>
<td>5.0</td>
<td>5.066</td>
</tr>
<tr>
<td>Horizontal Emittance (nm)</td>
<td>2.5</td>
<td>1.0</td>
<td>5.1</td>
<td>5.5</td>
</tr>
<tr>
<td>Vertical Emittance (pm)</td>
<td>5.0 (target)</td>
<td>5.0</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Energy Spread (x10^{-3})</td>
<td>0.86</td>
<td>0.55</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>J_x</td>
<td>1.0</td>
<td>1.6</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>J_y</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Q_x</td>
<td>14.53</td>
<td>15.141</td>
<td>76.310</td>
<td>56.584</td>
</tr>
<tr>
<td>Q_y</td>
<td>9.59</td>
<td>8.759</td>
<td>41.180</td>
<td>41.618</td>
</tr>
</tbody>
</table>
Lattice Sensitivities

<table>
<thead>
<tr>
<th></th>
<th>CesrTF</th>
<th>ATF</th>
<th>TESLA</th>
<th>ILC 6km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrupole Alignment (nm)</td>
<td>756</td>
<td>241</td>
<td>80.7</td>
<td>198</td>
</tr>
<tr>
<td>Quadrupole Rotation (µrad)</td>
<td>245</td>
<td>825</td>
<td>40.5</td>
<td>58.3</td>
</tr>
<tr>
<td>Sextupole Alignment (µm)</td>
<td>227</td>
<td>45.6</td>
<td>11.3</td>
<td>40.4</td>
</tr>
</tbody>
</table>

- ATF / TESLA / ILC from A. Wolski
- Note: these are sensitivity estimates and *not* actual tolerances
- Alignment sensitivities tend to be significantly less for CesrTF!
- Nominal CESR alignment *resolutions* and *tolerances*
 - Quad Position: ~100 µm ~100-200 µm
 - Quad Rotation: ~100 µrad ~100 µrad
 - Sextupole Position: ~100 µm ~200-400 µm
- Local errors may be (are in a number of cases) larger
Presently at an early stage of evaluation

- As expected from sensitivity estimates, most critical item is quadrupole alignment errors
- Need to pursue improvements in both the starting point alignment and in correction methods
Machine Corrections

- Starting the study of machine corrections
- Plots at right show impact of closed orbit correction
 - Running average and standard deviation are plotted for a series of 200 seeds
 - Thus right edge gives expected value
- Still testing/evaluating the full suite of corrections
- Then will explore emittance tuning schemes
• Quadrupole alignment is a critical issue
 – Need a ring-wide improvement
 • Has major implications for the scope of the alignment upgrade
 – In order to have a starting point consistent with 5-10 pm vertical emittance goal, should aim for better than 100 µm initial alignment capability
 – We still need to review the impact of vibration/ground motion issues and magnet support stability (also magnet stability)
• Question: How much will upgrading the CesrTF alignment and survey capabilities benefit the alignment and survey R&D needed for the ILC damping rings?