

Observation of Electron Trapping

at the CESR Test Accelerator

Jim Crittenden Accelerator Physics Seminar Wilson Lab

8 November 2013

Phases I and II: 2008-2014

Low-emittance tuning development (s.c. wigglers) Electron cloud buildup/mitigation techniques Beam dynamics/instabilities Innovative instrumentation (SPU, RFA, xBSM, vBSM, ...) 3 recent PhD dissertations (Joe Calvey, Mike Ehrlichman, Jim Shanks) Several dozen articles published, about 30 in preparation

Phase III: 2014-2017 (proposal 12/2013)

Analysis of huge data sets from Phases I and II Lower emittance allowing study of new electron cloud phenomena Fast-ion instability studies Novel instrumentation R&D

ILC Damping Rings R&D at CESRTA, G. F. Dugan, M. A. Palmer and D. L. Rubin ICFA Beam Dynamics Newsletter Nr 50, Ed J. Urakawa (2009)

The CESRTA Phase I Report December/2012, 428 pages

The CESR Test Accelerator Electron Cloud Research Program Phase I Report

M. A. Palmer, M. G. Billing, G. F. Dugan, M. A. Furman Editors: and D. L. Rubin

N. Omcikus¹, K.C. Harkay², R. Dowd³, W. Guo, S.Y. Zhang⁴, R.L. Holtzapple⁵, L. Fabrizio⁵, M. Randazzo⁵, D. Asner⁶, M. Cunningham⁶, D. Carmody⁷, J. Chu⁷. F. Antoniou⁸, S. Calatroni⁸, F. Caspers⁸, M. Gasior⁸, R. Jones⁸, Y. Papaphilippou⁸ J. Pfingstner⁸, G. Rumolo⁸, H. Schmickler⁸, M. Taborelli⁸, D. Gonnella⁹, J. Jones¹⁰, A. Wolski¹⁰, D. Tevtelman¹¹, J.P. Alexander¹², J. Barlev¹², L. Bartnik¹², M.G. Billing¹² K.R. Butler¹², J.R. Calvey¹², S.S. Chapman¹², G.W. Codner¹², M. Comfort¹², C.C. Conolly¹², J.V. Conway¹², J.A. Crittenden¹², C.A. Dennett¹², J.A. Dobbins¹². G.F. Dugan¹², N. Eggert¹², M. Ehrlichman¹², E. Fontes¹², M.J. Forster¹², R.E. Gallagher¹² S.W. Gray¹², S. Greenwald¹², D.L. Hartill¹², W. Hartung¹², Y. He¹², R. Helms¹² L. Hirshman¹², W.H. Hopkins¹², J. Kaminsky¹², J. Kandaswamy¹², J-S. Kim¹², D.L. Kreinick¹², B. Kreis¹², J. Lanzoni¹², Z. Leong¹², Y. Li¹², H. Liu¹², X. Liu¹², J.A. Livezey¹², A. Lyndaker¹², J. Makita¹², M. McDonald¹², V. Medjidzade¹², R.E. Meller¹², T.P. Moore¹², T.I. O'Connell¹², M.A. Palmer¹², S.B. Peck¹², D.P. Peterson¹²¹⁸Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, 00044 Frascati, G.A. Ramirez¹², M.C. Rendina¹², P. Revesz¹², D.H. Rice¹², N.T. Rider¹², D.L. Rubin¹², D.C. Sagan¹², S. Santos¹², J. Savino¹², R.M. Schwartz¹², R. Seeley¹², J. Sexton¹², J. Shanks¹², J.P. Sikora¹², E.N. Smith¹², K.W. Smolenski¹², K.G. Sonnad¹², M. Stedinger¹² C.R. Strohman¹², A.B. Temnykh¹², M. Tigner¹², J.T. Urban¹², S. Vishniakou¹², S. Wang¹² W. Whitney¹², T. Wilksen¹², H.A. Williams¹², Y. Yariv¹², M.C. Ross¹³, C.Y. Tan¹³ R. Zwaska¹³, B. Carlson¹⁴, K. Hammond¹⁵, M. Lawson¹⁶, C. Cude¹⁷, T. Demma¹⁸, J. Flanagan¹⁹, H. Fukuma¹⁹, T. Ishibashi¹⁹, P. Jain¹⁹, K. Kanazawa¹⁹, S. Kato¹⁹, K. Kubo¹⁹, K. Ohmi¹⁹, K. Oide¹⁹, H. Sakai¹⁹, K. Shibata¹⁹, Y. Suetsugu¹⁹, H. Tajima¹⁹ M. Tobiyama¹⁹, J. Urakawa¹⁹, R.J. Macek²⁰, J. Byrd²¹, C.M. Celata²¹, J.N. Corlett²¹ S. De Santis²¹, M.A. Furman²¹, A. Jackson²¹, R. Kraft²¹, D.V. Munson²¹, G. Penn²¹. D.W. Plate²¹, A. Rawlins²¹, M. Venturini²¹, M. Zisman²¹, E.L. Wilkinson²², H. Jin²³ L. Boon²⁴, A.F. Garfinkel²⁴, D. Kharakh²⁵, J. Ng²⁵, M.T.F. Pivi²⁵, L. Wang²⁵, R.P. Badman²⁶, S. Veitzer²⁷, L. Schächter²⁸, P. Kehayias²⁹, and L. Hales³⁰

¹American River College, Sacramento, CA 95841, U.S.A. ²Argonne National Laboratory, Argonne, IL 60439, U.S.A. ³Australian Synchrotron, Clayton, 3168, Australia. ⁴Brookhaven National Laboratory, Upton, NY 11973, U.S.A. ⁵Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407. U.S.A. ⁶Department of Physics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. ⁷Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15389, U.S.A. ⁸CERN, CH-1211 Genève 23, Switzerland. ⁹Department of Physics, Clarkson University, Potsdam, NY 13699, U.S.A. ¹⁰Cockroft Institute, Warrington, Cheshire, U.K. ¹¹Dimtel, Inc., San Jose, CA 95124, U.S.A. ¹²Cornell Laboratory for Accelerator-based Sciences and Education, Cornell University. Ithaca, NY, 14850, U.S.A. ¹³Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A. ¹⁴Physics Department, Grove City College, Grove City, PA 16127, U.S.A. ¹⁵Department of Physics, Harvard University, Cambridge, MA 02138, U.S.A. ¹⁶Department of Physics, Harvey Mudd College, Claremont, CA 91711, U.S.A. ¹⁷Department of Physics, Indiana University, Bloomington, IN 47405, U.S.A. Italy. ¹⁹High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan. ²⁰Los Alamos National Laboratory, Los Alamos, NM 87544, U.S.A. ²¹Lawrence Berkelev National Laboratory, Berkeley, CA 94270, U.S.A. ²²Department of Physics, Lovola University, Chicago, IL, 60626, U.S.A. ²³Department of Physics, Postech, Pohang, Gyeongbuk 790-784, R.O.K. ²⁴Department of Physics, Purdue University, West Lafayette, IN 47907, U.S.A. ²⁵SLAC National Accelerator Laboratory, Menlo Park, CA 90425, U.S.A. ²⁶Department of Physics, Syracuse University, Syracuse, NY 13244, U.S.A. ²⁷Tech-X Corporation, Boulder, CO, 80303, U.S.A. ²⁸Department of Electrical Engineering, Technion-IIT, Haifa, 32000, Israel. ²⁹Department of Physics and Astronomy, Tufts University, Medford, MA 02155, U.S.A. ³⁰Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, U.S.A.

Shielded Pickup Detector in Quadrupole Q48W

Observation of Electron Trapping

Observation of Electron Trapping in a Positron Storage Ring

M.G. Billing, J. Conway, E.E. Cowan, J.A. Crittenden, J. Lanzoni, Y. Li, C.S. Shill, J.P. Sikora and K. Sonnad ArXiv: 1309.2625v2, submitted 9/10/2013

Comparison of shielded-pickup signals for 10-bunch and 20-bunch trains

How do the first ten bunches of a 20-bunch train know that they are in a 20-bunch train?

Electron cloud buildup modeling code ECLOUD

Cornell University Laboratory for Elementary-Particle Physics

Cloud snapshot after 14 ns at 15W

* Originated at CERN in the late 1990's * Widespread application for PS, SPS, LHC, KEK, RHIC, ILC ... * Under active development at Cornell since 2008 * Successful modeling of CESRTA tune shift measurements * Interactive shielded pickup model implemented in 2010 * Full POSINST SEY functions added as option 2010-2012 * Flexible photoelectron energy distributions added 2011 * Synrad3D photon absorption distribution added 2011 I.Generation of photoelectrons

- A) Production energy, angle
- B) Azimuthal distribution (v.c. reflectivity)
- II. Time-sliced cloud dynamics
 - A) Cloud space charge force
 - B) Beam kick
 - C) Magnetic fields
- III. Secondary yield model
 - A) True secondaries (yields > 1!)
 - B) Rediffused secondaries (high energy)
 - C) Elastic reflection (dominates at low energy)
- IV. Shielded pickup model
 - A) Acceptance vs incident angle, energy
 - B) Signal charge removed from cloud
 - C) Non-signal charge creates secondaries

Is electron trapping expected under these beam conditions? Ask the model.

About 9% of the cloud built up by the train survives until the next passage of the train.

8 November 2013

Where is the cloud trapped?

Modeled electron cloud transverse distribution Immediately prior to the return of the bunch train

8 November 2013

Rich future measurement program

Clearing trapped electrons by means of an intermediate train of bunches (JPS measurements from last Tuesday 11/5 !)

Is the clearing effect expected under these beam conditions? Ask the model.

