

ILC DR Implementation Planning Overview

S. Guiducci (LNF)

CTA09, 26 June 2009

6/26/09 CTA09, Cornell

Global Design Effort

1

- To Do:
 - Update R&D plan
 - Choice of new Baseline SB2009
 - Process from e-cloud R&D results to DR vacuum system design (choice of mitigation techniques)
 - Organization and preparation of TDP2 plans:
 - 5 WGs as now? We need coordinators for WG4 and 5
 - Update the list of objectives
 - Ask plans and resources to the interested labs

• Talks at:

http://ilcagenda.linearcollider.org/conferenceOtherViews.py?confld=3154&view=standard&sho wDate=all&showSession=1&detailLevel=contribution

• Report on the AAP review at:

http://ilc-edmsdirect.desy.de/ilc-edmsdirect/file.jsp?edmsid=*879165

- The AAP notes that ... the impact of the e-cloud must be reevaluated for the 12 ns and 6 ns bunch spacings ... with half the number of bunches in the 6-km configuration, i.e. 12 ns bunch spacing would operate in a safer regime with regard to electron cloud. Reducing the positron ring circumference to 3-km may risk losing this back-up solution.
- The AAP would like to see a plan laid out showing how the damping ring group plans to arrive at a decision for the viability of the ILC damping ring choice with respect to electron-cloud immunity. A clear set of criteria for the vacuum system should be developed that will lead to the choice of a baseline solution. Alternates along with required R&D can also be specified. A schedule for establishing the criteria and the baseline should be shown.

AD&I meeting at DESY May 28-29

• Talks at:

http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=3526

- Cut from the Summary Report:
 - The proposal and options to reduce the circumference of the DR were discussed.
 - A discussion on the 'upgrade' potential from the SB2009 proposed 1312 bunches back to the current RDR nominal value of 2623 (doubling the current) immediately identified bottlenecks.
 - The Working Assumption is to continue with the 3.2km option, but attempt to quantify the current limits due to e-cloud (ongoing R&D).
- Action Items for DR
 - For 3.2km ring, what are the estimated limits on bunch charge and number?
- Update risk register (bunch distance and current)
- Discussion at ALCPG, 28 September-3 October 2009

	RDR 2007	TDP	SB2009	?
		TILC08		
# of bunches	2684-5412	2610-5265	1305-2632	1300
Bunch population N_{b}	2-1 · 10 ¹⁰	2-1 · 10 ¹⁰	2-1 · 10 ¹⁰	2 · 10 ¹⁰
Bunch distance (ns)	6.2-3.1	6.2-3.1	6.2-3.1	3.1
C (m)	6695	6476	3238	1600
h	14516	14042	7021	3500
Kicker frep MHz (1ms linac pulse)	2.8-5.5	2.7-5.4	1.4-2.7	1.4

For 2632 bunches $N_b = 2 \cdot 10^{10}$

Number of bunches and Circumference

- For 1300 bunches one could design a very short ring, as the SuperB one (~1600 m) without wigglers
- Wigglers give the main contribution to the ecloud density
- Cost would be reduced by ~1/4

Minimum Machine: New 3 Km layout

Arcs based on SuperB-like cells

Same straight sections as the 6 km ring

Cost estimate for TDP-2: straight sections scale directly from the 6 km ring, for the arcs use information from the SuperB TDR

5/29/09 AD&I, DESY

M. Biagini

	Concern			RISK	COST	r*C	MITIGATION	
• • • • • • •								Risk
	(1) Secondary Emission Yield to			•••	• •	• • •	Return to two e+ ring design after	
ĺ	high. >1.2		Q	High	200	100	extensive R&D programs	analy
	(2) Vacuum system design not robust			Med	20		Redesign vacumm system with 5 more distributed pumping	
	(3) High impedance of vacuum chamber components			Med	10		More engineering design or DR re	Nee
	(4) RF Margin		Q	Med	50	1:	Increase klystron/cavity system 3 by 50%	Linde
	(5) Combination of concerns wi and Wiggler layouts	th RF	Q	Med	100	2	Increase in number of shafts and alcoves	Opue
	(6) Plan for having room for fut double ring, later decision	ure	Q	Low	20		Increase tunnel diameter and 2 include above (5)	
	(7) General concern with injection/extraction kicker performance			Med	20		Increase no of kicker units and/or	
Cor	ncern	СОМ	MENTS				UPDATES (my evaluatio	n) l
(1) : higi	Secondary Emission Yield too h. >1.2	Assu chan 3/27/0	mes CF ged to a	-&S desiç allow this	gns have l s possibilt	been y. Ref JMP	Mitigation Techniques can lower e-c density below instability threshold. MT on vacuum system design, cost impedance not yet evaluated, see 2,	Floud Effect of and 3. Very low
(2) rob	 (2) Vacuum system design not robust (3) High impedance of vacuum chamber components (4) RF Margin (5) Combination of concerns with PE 		Present vacuum system design includes Early decision is less expensive and less antechamber in dipoles (1) and more impact on other systems Ref JMP pumping speed. Cost will be available in few 3/27/07 weeks.					
(3) cha			recent estimates indicate that nominal Could be input to review of design parameters are below the thresholds for parameter range Ref JMP 3/27/07 microwave and other instabilities					
(4)			on CF&S Ref JMP 3/27/07 has been reduced Since momentum compaction					
and	I Wiggler layouts	3/27/0	07	n coupiet	A WILLI 4,0		risk of 4,6 is reduced	Med
(0)	indian in a later desision	Ref.I	MP 3/2	7/07			double ring is unlikely	Very low
• • dou	General concern with			• •	•••	•••	l kickers satisfy most specifications	but still

. .

. .

- The process of making the choice of e-cloud cures for DR design, in my opinion, should be similar to that adopted for the choice of the Baseline Configuration recommendation:
- A working group, coordinated by an expert, that defines the work/resources needed for a reliable evaluation and assigns the tasks to the available resources.
- At the conclusion of the work the results will be discussed at a DR meeting and a selection procedure will be setup in order to arrive to a widely accepted decision.
- I would like to hear your comments and suggestions

- The proposed working group on electron cloud could start soon the work on the evaluation of mitigation techniques, simulations and code benchmarking for the AD&I option.
- A lot of work has been already done and information available on mitigations such as on coatings, clearing electrodes and grooves from SLAC, KEK, CERN, etc.
- In any case, it would be important to wait for CesrTA input.
- The time scale for the working group to produce a recommendation on mitigations should then be middle of 2010, or after the CesrTA runs will be completed.

28 September-3 October 2009

– Update R&D and TDP2 plans

- Process from e-cloud R&D results to DR design (choice of mitigation techniques)
- Discussion of new Baseline choice SB2009
- Presentations on R&D and Design work

What changes with the number of bunches

	EDR	SB2009	
	DCO	DSB	
Energy (GeV)	5	5	
Circumference (m)	6476	3238	
Bunch number	2610 - 5265	2610 - 1305	
N particles/bunch	2x10e10	2x10e10	
Damping time tx (ms)	21	21	
Emittance ex (nm)	0.48	0.37	
Emittance ey (pm)	2.0	2.0	
Momentum compaction	1.7x10-4	1.8x10-4	
Energy loss/turn (MeV)	10.3	5.3	
Energy spread	0.0013	0.0013	
Bunch length (mm)	6	6	
RF Voltage (MV)	21	11	
RF frequency (MHz)	650	650	
B wiggler (T)	1,6	1,6	
Lwig total	215,6	107,8	
Number of wigglers	88	44	

Half circumference

Half RF cavities

Half wigglers