

... for a brighter future

Synrad2d and synrad3d comparisons of the 3.2km ILC DR

L. Boon, K. Harkay 7/22/10

UChicago Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Acknowledgments

- Everyone in the Cornell Ecloud group
- David Sagan
- Gerry Dugan
- Kiran Sonnad
- Jim Crittenden

Introduction

- ILC 3.2 km Damping Ring
 - Lattice file converted from Mad to Bmad by Kiran Sonnad
 - Wiggler modeled as a series of bending magnets and drifts (Plan to compare with realistic wiggler model with Kiran Sonnad and David Sagan)
 - Round chambers with no antechambers
- The synrad2d simulations were carried out by Kiran Sonnad and presented in March 2010
- Reproduced synrad2d plots in synrad3d to make comparisons

Background on Synrad3d

- Written by David Sagan and Gerry Dugan
- Synrad3d is a photon tracking program
 - Uses radiation integrals to to generate macro-photons
- Follows the photons as they move in the chamber
 - Uses photon reflectivity to determine if the photon is reflected or absorbed
 - All scatters are specular and elastic
 - Follows the photon until it is absorbed

L. Boon and K. Harkay 7/22/10

Synrad3d parameters and assumptions

Normalization

- photons/m/beam particle = $N_{L}^{*}I/L$
- For these graphs L= .1m
- There were 60,000 photons generated
- No photon energy cut
- Reflectivity turned off

Lattice top view

L. Boon and K. Harkay 7/22/10

Synrad3d Results +x side

L. Boon and K. Harkay 7/22/10

Synrad3d +x side

L. Boon and K. Harkay 7/22/10

L. Boon and K. Harkay 7/22/10

Argonne

L. Boon and K. Harkay 7/22/10

L. Boon and K. Harkay 7/22/10

L. Boon and K. Harkay 7/22/10

L. Boon and K. Harkay 7/22/10

Conclusions

- Without reflections:
 - Synrad3d gives a photon flux 10% higher than synrad2d in the arc regions.
 - Synrad3d gives a photon flux that rises more rapidly than synrad2d at the beginning of the wiggler section.

- Allowing reflections in synrad3d:
 - ~2x the photons absorbed immediately downstream of the wigglers (s=2091m) on the positive x side of the chamber.
 - Now photons absorbed on the negative x side of the chamber in the arc sections.
 - Wiggler photons scatter downstream(>50m) into the arc region.

