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Abstract
A recent redesign of the ILC has led to changes in the

overall configuration as well as revised damping ring pa-
rameters. In addition, further understanding of the factors
affecting the performance of the damping ring has led to
a reconsideration of the constraints on the damping ring.
This report summarizes the new constraints, examines the
implications of these constraints and the new configuration,
and describes possible operating modes of the damping
ring. The most promising choices of ring circumference
and thus harmonic number are enumerated and examined
in detail.

INTRODUCTION
As part of the Reference Design Report for the ILC [1],

the configuration of the machine has been altered to achieve
significant cost savings without adversely affecting its ca-
pabilities. The revised configuration is shown in Fig. 1
[2]. The most prominent change is that there is a single
IR which is now enclosed by the two damping rings. The
two damping rings occupy the same tunnel, with the beams
in each ring circulating in opposite directions. Overall, the
rings will be near mirror images of each other. For each
ring, the extraction line is roughly opposite the injection
line.

Besides significant differences in the layout of the ILC,
several key parameters have also changed. The beam en-
ergy in the damping ring is 5 GeV, the 650 MHz RF oper-
ates at 24 MV, for a natural bunch length of 9 mm (up from
6 mm), and the momentum compaction factor is 4.2×10−4.
The most current design for the damping ring lattice has 6
arc sections, 4 short straights with wigglers, and two long
straights for injection and extraction. The circumference is
6–7 km but the exact harmonic number, h, has not been fi-
nalized. Part of this report is a list of suggested values for
h, along with the choices for operating modes available for
each value of h.

CONSTRAINTS
The main constraints required for proper timing of

bunches are given in Ref. [3], and are summarized below.
A newly considered constraint not included in this docu-
ment is imposed by the subharmonic buncher of the elec-
tron source. This works best when the ratio of bunch spac-
ing to the linac RF period is divisible by powers of 2 and 3.
One factor of two arises automatically because the linac RF
period is half of the damping ring RF period. The nominal

∗Work supported by the Director, Office of Science, U.S. Dept. of
Energy under Contract DE-AC02-05CH11231.

constraint is that this ratio must be divisible by 24, although
additional factors of 3 would be desirable. This report will
focus on designs where the bunches are injected (as well
as extracted) from the damping ring with a uniform period
kb, where kb is the ratio between the bunch spacing in the
linac and the damping ring RF period. Because the RF pe-
riod in the damping ring is twice that of the RF in the linac,
we require that kb be divisible by 12 based on the require-
ments of the subharmonic buncher. Furthermore, in order
to avoid injecting two bunches in overlapping positions, it
is necessary for the lowest common multiple of h and kb to
be > kbNb, where Nb is the total number of bunches. This
constraint is fulfilled for all parameters we are considering,
however.

Within the damping ring, the bunches should form a se-
quence of p bunch trains. These bunch trains will be laid
out over multiple turns of the damping ring. Each train
should consist of no more than 50 bunches, although in
practice this number might depend on the charge per bunch.
The spacing between bunch trains should be at least 40 ns,
or 26 τRF. Thus, there should be at least 25 empty buck-
ets separating the tail of one bunch train and the head of
the next bunch train. We define the minimum gap spac-
ing g0 = 26. Within a bunch train, each bunch must be
surrounded by at least one empty bucket on either side, in
other words bunches must be separated by at least 3.08 ns.
The separation of bunches within a train will be denoted
nb, so we require nb ≥ 2. This constraint is related to the
rise and fall time of the kicker magnets, to ensure that a
single bunch can be extracted without perturbing adjacent
bunches. Larger bunch separation would be desirable in
order to simplify the design of the kicker magnets. The
maximum kicker repetition rate is roughly 6 MHz, which
implies that kb ≥ 108.

Other constraints are imposed by the desire to maximize
the ideal luminosity while at the same time limiting insta-
bilities which may degrade this luminosity. The average
current in the linac pulse is chosen to be exactly 9 mA. The
nominal pulse duration is 980 µs, for a total of 5.5 × 1013

particles per pulse. The maximum number of particles per
bunch is taken to be 2.3× 1010.

To generate a fill pattern of p bunch trains, with spac-
ing nb within each bunch train, it is necessary for pkb =
qh − nb, where p and q are relatively prime. Here, q is
the number of revolutions through the ring before the first
bunch kicked in gets a “partner” kicked in nb periods in
front of it, extending the bunch train. First, the tail of each
bunch train is positioned, then leading bunches are added
to each bunch train in turn. The reason for the minus sign
above is to have bunch trains extracted starting from the
tail of the train and proceeding to the head. This allows the
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Figure 1: Revised schematic of the ILC, taken from the ILCDR07 workshop. Figure courtesy of A. Wolski.

requirement on the fall time of the kicker magnets to be re-
laxed, as short rise times are easier to achieve. Note that if
bunches are added until the gaps between bunch trains are
completely filled, the bunch spacing may be < nb. How-
ever, the primary mode of operation we consider is to keep
the number of bunches sufficiently low that the gaps are all
≥ g0. The spacing between the tail of one train and the
head of the next is not necessarily a multiple of nb, which
is what allows us to have nb > i, where i is the greatest
common factor of kb and h.

In order to have the required minimum gap size between
each bunch train, the total number of buckets contained
within the ring, h, must satisfy

h ≥ Nbnb + p(g0 − nb). (1)

Expressing Nb = 1 + τf/kb, where τ is the pulse duration
in the linac, f is the RF frequency in the damping ring, and
kb is the kicker spacing relative to the damping ring RF, and
using pkb = qh− nb, we can find the following constraint
on the value of kb:

kb ≥
nbτf

h
+ q(g0 − nb). (2)

This, together with the limit on charge per bunch, restricts
the allowed values of kb to a narrow range. In fact, for nb =
6, even for q = 1 the only possible values are kb ≥ 276.
For a given value of nb, as q is increased the minimum kb

increases as well.
The most typical filling pattern uses q = 1, so that each

bunch train has one bunch added to it with each rotation
period of the ring. Because there can be at most 50 bunches
per train, this means that the pulse in the linac can only have
a duration of 50 rotation periods. If h < 12740, then this
means that τ < 980 µs. Shorter rings would require either
a shorter pulse duration in the linac or allowing more than
50 bunches per bunch train inside the damping ring. For
the few examples below which have smaller values of h,
shorter pulse durations will be assumed.

Additionally, for kb = 108, even for nb = 2 the max-
imum number of bunches per train allowed under the typ-
ical q = 1 mode is 1 + (kb − g0)/nb = 42. This won’t
allow the full 980 µs pulse. Even for kb = 120, the maxi-
mum number of bunches per train is 48, which will require
shortened bunch trains if h < 13270. As will be shown

below, kb = 108 is only an option for the high end of the
choices for h. parameters anyway.

For the nominal beam current, the maximum particles
per bunch of 2.3 × 1010, together with the constraint that
kb be divisible by 12, requires kb ≤ 264. Using a more
aggressive limit of 2.5 × 1010 particles per bunch would
allow values of kb up to 288.

MAIN OPERATING MODE
We have basically restricted our attention to kb = 12 a,

where a is an integer between 9 and 22. Thus, we are look-
ing for choices of pkb/12 which contain a maximum num-
ber of divisors in this range. The most obvious choices are
multiples of 60, and for q = 1 they should lie somewhere
between 900 and 1300. The best choice for having many
factors is 1260, which leads to h = 15120 + nb, but other
options are also potentially interesting. Some promising
choices which do not fit this pattern are h − nb = 14784,
13860, 13440, and 12096. Below, we focus on the best
options with the most flexibility under the constraints.

There are several different types of flexibility that are
desirable for the damping ring operation. First, in the linac
it is useful to have different choices for the bunch spacing,
in other words different choices of kb. Within the damping
ring, it is useful to have different numbers of bunch trains,
p; this comes naturally from different choices of kb through
pkb = qh − nb. It is also worthwhile to have different
options for the value of nb, as the sensitivity of collective
effects to nb is not well known. Unfortunately, increasing
nb tends to reduce the number of acceptable values for kb.
Furthermore, those values of h which allow for multiple
choices of nb tend to only have 1 or 2 choices of kb for
each each value of nb. There are a few cases with nb = 2
that also work for nb = 4 simply by doubling kb. There
are almost no examples which allow for switching between
nb = 2 and nb = 3, or between nb = 3 and nb = 4, and
the only one which doesn’t just offer one value of each or
require kb > 264 is h = 12013. Flexibility in nb can also
be achieved by varying h by 1 or 2, but this is probably too
large a shift to be achieved by the tunable delay sections as
they are currently envisioned.
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Table 1: Options for h parameter and different operating modes.

h nb kb p q i Nb τ (µs) Np (1010) Mmax gmin L (m)
Single value for nb:
15122 2 252 60 1 2 2528 980 2.18 43 169 6975
15122 2 240 63 1 2 2654 980 2.07 43 157 6975
15122 2 216 70 1 2 2949 980 1.87 43 133 6975
15122 2 180 84 1 2 3539 980 1.56 43 97 6975
15122 2 168 90 1 2 3792 980 1.45 43 85 6975
15122 2 144 105 1 2 4424 980 1.24 43 61 6975
15122 2 120 126 1 2 5308 980 1.04 43 37 6975
15122 2 108 140 1 2 5881 977 0.93 43 26 6975
15123 3 252 60 1 3 2528 980 2.18 43 128 6975
15123 3 240 63 1 3 2654 980 2.07 43 116 6975
15123 3 216 70 1 3 2949 980 1.87 43 92 6975
15123 3 180 84 1 3 3539 980 1.56 43 56 6975
15123 3 168 90 1 3 3792 980 1.45 43 44 6975
14402 2 240 60 1 2 2654 980 2.07 45 153 6642
14402 2 192 75 1 2 3318 980 1.66 45 105 6642
14402 2 180 80 1 2 3539 980 1.56 45 93 6642
14402 2 144 100 1 2 4424 980 1.24 45 57 6642
14402 2 120 120 1 2 5308 980 1.04 45 33 6642
12962 2 240 54 1 2 2654 980 2.07 50 143 5978
12962 2 216 60 1 2 2949 980 1.87 50 119 5978
12962 2 180 72 1 2 3539 980 1.56 50 83 5978
12962 2 144 90 1 2 4424 980 1.24 50 47 5978
12962 2 120 108 1 2 5185 957 1.04 49 26 5978
Two choices for nb:
14042 2 216 65 1 2 2949 980 1.87 46 127 6476
14042 2 180 78 1 2 3539 980 1.56 46 91 6476
14042 2 156 90 1 2 4083 980 1.35 46 67 6476
14042 2 120 117 1 2 5308 980 1.04 46 31 6476
14042 4 240 117 2 2 2654 980 2.07 23 33 6476
13862 2 252 55 1 2 2528 980 2.18 46 162 6393
13862 2 180 77 1 2 3539 980 1.56 46 90 6393
13862 2 132 105 1 2 4826 980 1.14 46 42 6393
13862 4 264 105 2 2 2413 980 2.28 23 44 6393
12602 2 252 50 1 2 2500 969 2.18 50 154 5812
12602 2 180 70 1 2 3500 969 1.56 50 82 5812
12602 2 168 75 1 2 3750 969 1.45 50 70 5812
12602 4 240 105 2 2 2573 950 2.07 25 26 5812
15125 3 228 199 3 1 2794 980 1.97 15 36 6976
15125 5 252 60 1 1 2528 980 2.18 43 46 6976
15125 5 240 63 1 5 2654 980 2.07 43 34 6976
12013 2 264 91 2 1 2413 980 2.28 27 80 5541
12013 2 168 143 2 1 3792 980 1.45 27 32 5541
12013 3 252 143 3 1 2528 980 2.18 18 33 5541
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The best choices for this main operating mode, where
the pulse in the linac is completely regular with no gaps, are
given in Table 1. If it is required to have nb > 2, h = 12099
or h = 15123 are the best options. The table also gives the
greatest common factor, i, of kb and h. Larger values of i
may simplify feedback systems, and are also desirable, but
in most cases i = nb. In a few examples, i = nb/2 or
i = 1. In any case, unless the kicker is to have a variable
period, it is necessary for nb to be a multiple of i, so large
values of i require large values of nb.

The biggest “culprits” for the lack of options are the re-
quirement that kb be divisible by 12, the limit of maximum
charge per bunch of 3.7 nC, which forces kb ≤ 264, and
the pulse duration of 980 µs. The pulse duration, together
with the requirement that there be at most 50 bunches per
train in the damping ring, eliminates most options when the
ring circumference is less than 5875 m, or h ≤ 12740. The
example where h = 12602 only worked by reducing the
pulse duration to 969 µs, although smaller rings are unde-
sirable for other reasons. The narrow range of choices for
kb and h eliminate the possibility of independent tuning of
both nb and kb for fixed circumference. Because of uncer-
tainty in how instabilities are related to the bunch spacing,
h = 14042 seems to be the best option. However, a ring
with h = 15122 has many options for nb = 2, and it may
be possible to modify the ring so that h = 15123, which
has various options for nb = 3. Switching back and forth
between these two circumferences would probably not be
possible, however. The last two options, h = 15125 and
h = 12013, have been included because they allow for
combinations of nb which cannot be achieved in any other
way, which might be useful if new difficulties become ap-
parent either with nb = 2 or nb = 4.

ADDITIONAL OPTIONS THROUGH
RELAXED CONSTRAINTS

Changing or eliminating constraints on the damping ring
parameters or operating mode will clearly allow for many
new options. Allowing for more charge per bunch or reduc-
ing the average current will increase the maximum value
of kb, while reducing the pulse duration or the minimum
gap between bunch trains will allow for smaller values of
kb. Also, instead of extracting bunches from the tail to the
head of each train, they can be extracted in the reverse order
by choosing pkb = qh + nb, or in a more complicated or-
der by using large values of q so that adjacent bunches are
extracted at very different times. While many new options
can thus be found, most of these choices will have the same
values of nb and i. In fact, restricting kb to be a multiple of
12 pushes one to values of h which do not have many small
prime factors, and thus greatly restricts the possible values
of nb and i.

It is useful to consider what possibilities exist for a given
value of h mod 12, given that kb must be a multiple of 12.
If h mod 12 = 0 or 11, then nb = 11 or 12 or higher,
which is not going to work. Otherwise, nb = h mod 12 is

an option, usually with i = nb, but again nb > 6 is not go-
ing to work under the above constraints. There are only
a few alternative situations which satisfy all of the con-
straints, in particular Eq. (2), which are listed below. When
h mod 12 = 1, q = 1 will yield bunches which are too
close together and instead we require nb = q = 2, 3, or 4;
in all of these cases, i = 1. When h mod 12 = 2, then
i = 2 and there are two possibilities besides q = 1, nb = 2:
q = 7, nb = 2, or q = 2, nb = 4. When h mod 12 = 3,
then nb = i = 3 and q = 5 is a possibility. When h
mod 12 = 4, then nb = i = 4 and q = 4 is a possibility.
When h mod 12 = 5, then when nb = 5, and q = 1, i can
be either 1 or 5 depending on kb; otherwise, nb = q = 3
and i = 1. When h mod 12 = 7, then nb = q = 2 or
4, and i = 1. When h mod 12 = 8, then nb = i = 4
and q = 2. When h mod 12 = 9, then nb = i = 3 and
q = 3. When h mod 12 = 10, then i = 2 and either
nb = q = 4 or nb = 2 and q = 5. These possibilities plus
the choices for q = 1 are detailed in Table 2. The small
number of options for each case explains the difficulty in
finding different choices for nb and i for a given value of
h. Most of the alternative options beyond nb = h mod 12
are only possible for the largest allowed values of kb, yield-
ing at most a single alternative. Furthermore, if we want to
be able to choose between i = 2, 3, and 4, then that implies
h mod 12 = 0, which as stated above is a terrible choice
for finding solutions where kb is a multiple of 12.

Table 2: Parameter choices for different values of h
mod 12, considering only 2 ≤ nb ≤ 6 and small values
of q.

h mod 12 nb q i
0 - - -
1 2 2 1

3 3 1
4 4 1

2 2 1 2
2 7 2
4 2 2

3 3 1 3
3 5 3

4 4 1 4
4 4 4

5 5 1 1 or 5
3 3 1

6 6 1 6
7 2 2 1

4 4 1
8 4 2 4
9 3 3 3
10 2 5 2

4 4 2
11 - - -
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Instead, we consider on other modes of operation. Most
of the examples given above with nb = 4 were obtained by
taking an nb = 2, q = 1 solution, and doubling kb while
keeping p fixed to yield an nb = 4, q = 2 solution. How-
ever, this is only possible if p is odd, otherwise doubling
kb yields the solution (p/2)(2kb) = qh − nb, and nb is
unchanged. For these situations, allowing gaps in the linac
pulse allows for new solutions with the bunch spacing in
the damping ring doubled. If the linac pulse is alternately
run as normal or switched off every rotation period of the
damping ring (roughly 20 µs), then within each bunch train,
every other bunch is simply left out. The bunch spacing is
thus doubled, while p and kb are left the same. As a re-
sult, however, the linac pulse is split up into 20 µs pieces,
which alternate between having 18 mA (twice the nominal
current) and no current at all. The charge per bunch must
also be doubled to maintain the same total charge per pulse,
as half of the bunches are left out. The larger current may
present problems with instabilities, but this scheme has the
advantage of a reasonably simple timing structure for the
electron source. This method works when the original par-
ticles per bunch is less than half the maximum and p is even
(if p is odd then this method is not necessary). For exam-
ple, with h = 15122 and kb = 120 or kb = 108, we can
create bunch trains with nb = 4 in this way. Similarly, with
either h = 14402 or 12962, one option having nb = 4 can
be accessed in this way. This technique also works well for
h = 12013, because “solutions” with q = 1 and nb = 1
can be converted to allowing for nb = 2. In particular,
kb = 132 or kb = 156 are possible modes of operation,
although kb = 156 will require too much charge per bunch
for the average current to be maintained at 9 mA.

Further variations can be achieved by relaxing the condi-
tion on the sequence in which bunches are extracted. Bunch
trains can extend until they come close to overlapping other
bunch trains, and then either the gaps can be widened by
eliminating key bunches, or an entirely new set of gaps can
be created. By eliminating bunches to form fewer than p
gaps, longer bunch trains can be formed; this is especially
useful for small kb. This method can be used even if there
are a huge number of very small overlapping bunch trains,
although the ordering in which bunches are extracted will
be very irregular. Even when a choice of kb leads to ex-
tremely large values of p and q, the bunch trains can be
redefined in this way, especially in cases where i > 1 be-
cause then all bunches will at least be separated by the re-
quired 3.08 ns. The resulting nb will typically be equal to
i, although it might be possible to have nb = 2i in special
cases.

For most of the cases considered in the table, the main
value for nb is equal to i and is the only small prime factor
of h. The most extreme case is 15122, half of which is a
prime number itself. Thus, even the most convoluted tim-
ing scheme will result in nb = 2 or nb = 4, and the only
choices for i are 1 or 2. Thus, although this choice for h
works very well under the constraints, relaxing those con-
straints does not yield substantially new solutions. Even if

we allow for odd values of kb, there is no reasonable way to
obtain nb = 3 or nb = 5, because qh− 3 and qh− 5 have
no factors in the required range of values for kb, for any
reasonable values of q. On the other hand, for h = 14402,
we can have nb = 3, q = 1, and kb = 187, which works
within all other constraints, yielding 1.62 × 1010 particles
per bunch. Here, kb is not divisible by either 2 or 3; ex-
cept for the case where h mod 12 = 5, kb will never
be divisible by 2 or 3 in these extended examples. The
value for i will always be 1. For h = 12962, we have
161 ∗ 161 = 2h − 3, so this allows for nb = 3. Unfor-
tunately, this value for kb is too small and the maximum
pulse duration will be 764 µs. For h = 14042, we can have
nb = 3, q = 1, and kb = 139, which works but with a
pulse duration of 835 µs.

There are several extended options for h = 15125: nb =
2, kb = 213, yields 1.62×1010 particles per bunch, nb = 2,
kb = 152, yields 1.31 × 1010 particles per bunch. These
are nice examples because kb at least has one factor of 2 or
3. Of course, there are also additional options for nb = 3
and 5.

It is possible that some options which were neglected,
would work very well after relaxing one or more of the
constraints. However, the focus here is on finding values
of h which work best under the given constraints, and indi-
cate how those options might look if some constraints were
removed.

POSITRON GENERATION BY
ELECTRONS

There seems to be very little room to maneuver the elec-
tron bunches so each one extracted generates a positron
bunch that drops into the ring right where the positron
bunch it collided with came from. Other than very carefully
choosing the circumference, the only real options seem to
be adding delay lines that could be longer than 1 km, or
changing the arc length between the injection and extrac-
tion points. If, instead of being on exactly opposite ends of
the linac, the injection and extraction lines are each shifted
by ∆1 damping ring RF periods, then it will take h/2−2∆1

RF periods for a bunch to travel between the injection and
extraction points. In order for the timing scheme to work,
we must have L = h/2 + 2∆1 + Nch, where Nc is any in-
teger and L is the time between electron extraction and in-
jection of the positrons generated by those same electrons
(in units of length, that’s roughly 29 km). You could also
have ∆2 separating the electron injection and positron ex-
traction (and vice versa), but all that does is replace 2∆1

with 2∆1 + ∆2.
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