

RTML tuning Work so far...

Steve Molloy – 13th November, 2007

With many thanks to Jeff Smith, PT, Glen White, and Mark Woodley

Latest RTML layout

Plan of Attack (I)

- Use Lucretia as simulation package
- Apply standard set of errors.
- Develop static tuning techniques.
 - (No GM, beam jitter, etc.)
 - yet...
 - Aim for <4 nm vertical emittance growth.</p>
 - DR exit through to linac entrance.
- Determine "best" tuning technique for each region
 - One-to-one? KM? DFS? Magic dispersion bumps?

Plan of Attack (II)

I'm very new to this!

- Start with something "simple"

Tune-up long transport line

- No design coupling
- No acceleration or compression

Apply a couple of cheats

- Perfect alignment between quad centres and BPMs
- Turn off bend rolls
- Decided (or PT told me),
 - One-to-one first, then KM
 - DFS not appropriate (upstream of BC1).

RTML Twiss Plots

ILC RDR e⁻ RTML

RTML Twiss Plots

ILC RDR e RTML EGETAWAY

RTML Twiss Plots

ILC RDR e RTML EESCALATOR

Perfect Lattice – 2nd Order Dispersive Orbit

Zero momentum spread beam results in flat orbit.

Tuning Procedure

Misalign

One-to-one steering (steer to put beam through centre of BPMs)

Kick minimisation (KM) (Use correctors to cancel off-centre quad kicks)

Errors

cav misalign = 300e-6; cav_pitch = 300e-6; quad misalign = 300e-6; quad rot = 300e-6;ppm misalign = 200e-6; cryo_misalign = 200e-6; cryo pitch = 25e-6; quad strength = 2.5e-3; bend strength = 5e-3; bend rot = 0;Have since confirmed Fixed to quad centre tuning works with bend rotation of 300e-6 rad in these studies

Projected Emittance (after errors)

One-to-one steering on entire line

Build giant response matrix for whole line

- Response of all BPMs to all correctors
 - Both planes simultaneously
- R12, R14, R32, R34
 - Measuring is easy, and reduces errors
- Record BPM readings
 - Static tuning so no averaging needed
- Invert matrix and multiply
 - Find corrector settings to zero BPMs
- Iterate
 - Five times in these studies
 - Overkill three is enough

One-to-one results

Application of Kick Minimization to the RTML "Front End"

P. TENENBAUM January 30, 2007

2.1 The Matrix Equation and its Solution

Let us define \vec{B}_x as the vector of horizontal BPM readings, and \vec{B}_y as the vector of vertical BPM readings. We can then define vectors of BPM readings which have been adjusted to take into account the strength of the nearby corrector magnets: $\vec{C}_x \equiv \vec{B}_x - \vec{\theta}_x/\vec{KL}$, $\vec{C}_y \equiv \vec{B}_y + \vec{\theta}_y/\vec{KL}$, where we take the usual convention that positive KL values are horizontally focusing and where the division is array division (ie, the resulting vector components are $\theta_i/(KL)_i$).

Now define the usual steering response matrices: matrix M_{xx} is the response of the horizontal BPMs to the horizontal correctors; M_{xy} is the response of the horizontal BPMs to the vertical correctors; and so on. Now let us define a set of steering matrices which are modified by the quad strengths: for example, N_{xx} ,

$$N_{xx,ij} \equiv -\frac{1}{KL_i} + M_{xx,ij}, i = j,$$

 $\equiv M_{xx,ij}, i \neq j.$
(2)

The matrix N_{yy} is similarly defined except that the 1/KL term comes in with a positive sign and not a negative sign. The matrices N_{xy} and N_{yx} are identically equal to M_{xy} and N_{yx} , respectively.

We can now put this together into a matrix equation as follows:

$$\begin{bmatrix} \vec{B}_x \\ \vec{B}_y \\ \vec{C}_x \\ \vec{C}_y \end{bmatrix} = - \begin{bmatrix} M_{xx} & M_{xy} \\ M_{yx} & M_{yy} \\ N_{xx} & N_{xy} \\ N_{yx} & N_{yy} \end{bmatrix} \begin{bmatrix} \vec{\Delta \theta}_x \\ \vec{\Delta \theta}_y \end{bmatrix},$$
(3)

where $\vec{\Delta \theta}_{x,y}$ is the vector of corrector *changes* which are needed, relative to their current settings.

Application of KM

Value of weighting,

- "B" = square of RMS quad misalignment (300 um)
- "C" = square of RMS quad-bpm difference (7 um)

Applied only in y

- Problems in x due to "sparse" corrector layout
 - More on that later...
- Applied to entire line in one go
 - Not practical in real life, but that's why we simulate!
- Iterate three times
 - Errors result in imperfect R matrices
 - Iterate to converge on solution

Some "issues"

- KM breaks in the presence of kick sources not included in response matrix
 - Kubo discovered this with tilted cavities in the linac
 - Bends are problematic in RTML
- Sparse xcors make KM unstable
 - Similar to previous problem
 - No XCORS at QDs
 - Kick direction is systematic
 - "Correct" solution is not stable
- Tuning lattice in segments does not yet work
 - Incoming position/angle not accounted for?
 - This is only a theory...

Simultaneous KM in x & y

Tune machine in segments

- Tuning ~16 km in one go is not practical (!)
- Instead,
 - Tune region containing *n* BPMs
 - e.g. *n* = 40
 - Move on to next *n* BPM region, overlapping with previous by n/2
- Doesn't work (see next slides)
 - Region #1 is fine
 - KM misbehaves in subsequent regions
 - Smoking gun is that these begin with non-zero position and angle
 - Haven't proved this yet...

Works fine on this segment...

Obvious betatron oscillation develops in segment 2...

Summary

- Developed one-to-one and KM tuning algorithms in Lucretia
- Have tuned up to end of the return line.
 - ~10 nm emittance growth
 - Many problems may be fixed by beta matching
 - Also coupling-correction & dispersion knobs.
 - Expecting BC1&2 to be troublesome...
- Encountered problems with KM
 - Tuning one region at a time does not (yet) work
 - Tuning in x-plane (with no QD correctors) is unstable
 - One-to-one may suffice for x-plane
- Now to move onto spin rotator and BC1&2