Using n” mass constraint to improve
particle flow ?

Study prompted by looking at
event displays like this one of

a 5 GeV 7' in sidmay05
detector. "

Here photon energies are (3.1,
1.9 GeV), and clearly the
photons are very well
resolved.

Prompt ©°’s make up most of
the EM component of the jet
energy.




Investigating 7 Kinematic Fits

Standard technique for ©°’s is to apply the mass constraint
to the measured yy system.

Setting aside for now the combinatoric assignment
problem in jets, I decided to look into the potential
improvement in ¥ energy measurement.

In contrast to “normal ECALSs”, the Si-W approach
promises much better measurement of the yy opening
distance, and hence the opening angle at fixed R. This
precise 6,, measurement therefore potentially can be used
to improve the ¥ energy resolution.

How much ? ( My educated? guess was a factor of V2),
and how does this affect the detector concepts ?
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Methodology

Wrote toy MC to generate 5 GeV n” with usual isotropic CM decay
angle (dN/dcosf* = 1).

Assumed photon energy resolution (6¢/E) of 16%/E.
Assumed y—y opening angle resolution of 2 mrad.

Solved analytically from first principles, the constrained fit
problem under the assumption of a diagonal error matrix in terms
of (E,, E,, 2(1-c0s0,,)), and with a first order expansion.

— was hoping to get some insight into the analytic dependence on photon
resolution assumptions, but problem was somewhat harder than I expected
(had to solve a cubic)

— Note. m*=2E, E, (1 -co0s0,,)

n¥ kinematics depends a lot on cos0*. Useful to define the energy
asymmetry, a = (E-E,)/(E,+E,) = cos0*.



¥ mass resolution

« Can show that for 6/E = ¢,/\E that
Am/m = ¢, /N [(1-a2) E ;] @ 3.70 A0,,E _,\ (1-a2)

SO t]
1) d

he mass resolution has 2 terms

epending on the EM energy resolution

i) ¢

The

epending on the opening angle resolution

relative importance of each depends on (E_, a)



Angular Resolution Studies

g

5 GeV photon at ”
90°, sidmay05 : |
detector. . =

:::::

ampliiude ;. 427 AB2T.TT
1.298E-5
sipma +8.97E-E

Phi resolution of
0.9 mrad just
using cluster
CoG.

=> 0,, resolution
of 2 mrad i1s
reasonable for
spatially resolved
photons.



pi0 mass resolution contributions
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¥ mass
resolution

Plots assume:
c, =0.16 (SiD)
AO,, =2 mrad
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Fit quality

Probability

distribution flat (as

expected).

a=(E|-Ey)/(E\+E,)

Spike at low probability

corresponds to

asymmetric decays
(laj=1). I think I need to
iterate using the fitted
values for the error

estimation ....

pi0 kinematic fit
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n¥ energy
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n¥ energy
for |a] < 0.2

pi0 Kinematic fit
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pi0 kinematic fit

n” energy for
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pi0 kinematic fit

n¥ energy
for |a| > 0.8
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20 GeV nY, same resolution
assumptions

20 GeV pi0 study
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20 GeV 7Y, same resolution assumptions

20 GeV pi0 study
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5 GeV 1', 4 times better 0,, resolution

S GeV pil, 0.5 mrad opening angle resolution
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n¥ energy resolution improvement

S GeV pil, 0.5 mrad opening angle resolution

Dramatic !

Factor of 2 for
ALL asymmetries.
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n¥ energy resolution improvement

5 GeV pi0, 0.5 mrad opening angle resolution
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Conclusions

1 n¥ constrained fit has a lot of potential to improve
the ¥ energy resolution.

* Will investigate in more detail actual y—y
separation capabilities.

— Puts a high premium on angular resolution 1f this is as
useful as 1t looks.

* Looks worthwhile to also look 1nto the assignment
problem.

« May have some mileage for reconstructing the
n¥’s in hadronic interactions.



Backups



Position resolution from simple fit

Neglect layer 0 (albedo)

Using the first 12 layers with hits
with E>180 keV, combine the
measured C of G from each layer
using a least-squares fit (errors
varying from 0.32mm to 4.4mm).
Iteratively drop up to 5 layers in
the “track fit”.

Position resolution does
Indeed improve by a
factor of 5 In a realistic
100% efficient algorithm!
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Still just d/V12 !
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