Commissioning of AHCAL electronics in the test beam

Marius Groll

🛱 Universität Hamburg

on behalf of the CALICE analogue HCAL group

- Hadronic Calorimeter with scintillator tiles

Ш

- Innovative photodetector technology: SiPM
- VFE electronics specific for test beam data taking
- First test beam results

ECFA ILC 2005 - Marius Groll

An HCAL for the ILC

The internal structure of hadronic showers is not fully known

→ important issue for simulation improvement (detector studies)

→ Idea: Tracking calorimeter = high granularity to reconstruct single particles in the shower

➔ Particle flow: optimisation of the detector performance by reconstruction of each particle individually

An HCAL for the ILC

In the framework of CALICE: 1 m³ Tile HCAL prototype ~ 8000 calorimeter tiles equipped with SiPM → at present under construction 38 layers of sandwich structure with scintillator tiles + 2cm steal absorber plates

HCAL: High granularity scintillator tiles

3x3cm² in the core with individual readout

ECAL: Silicon-tungsten 40 layers, 1x1cm²

15/11/05

The HCAL readout chain

Read out 216 tiles/module ~8000 channels

Single tile readout with SiPM

SiPM: pixel device operated in Geiger mode

Readout board

ASIC: amplification + shaping + multiplexing

15/11/05

ECFA ILC 2005 - Marius Groll

connect to SiPM

Silicon PhotoMultiplier

- Multipixel avalanche photodiode operated in geiger mode
- new detector concept, first test with beam
- sizes: 1x1mm², 1156 pixels/mm²
- gain ~ 10⁶
- photon detection eff. ~ 10-17%
 = Q.E. × geiger discharge (U) × geom. eff.
 = 80% × 60% × 35%

SiPM

Pixels of the SiPM

SiPM main characteristics

Working point: $V_{Bias} = V_{breakdown} + \Delta V \sim 50-60 V$ $\Delta V = 10-15\%$ above breakdown voltage Each pixel behaves as a Geiger counter with $Q_{pixel} = \Delta V C_{pixel}$ with $C_{pixel} \sim 50 \text{ fF} \Rightarrow Q_{pixel} \sim 300 \text{ fC} \sim 10^6 \text{ e}$ Small depletion region ~ 2µm \Rightarrow strong electric field (2-3) 10⁵ V/cm \Rightarrow carrier drift velocity ~ 10⁷ cm/s \Rightarrow fast Geiger discharge < 500 ps \Rightarrow pixel recovery time = ($C_{pixel} \times R_{pixel}$) ~ 100 ns

Dynamic range ~ number of pixels→ saturation

ECFA ILC 2005 - Marius

Specification for the VFE electronics

- 1) Operate 8000 SiPM with individual bias voltage adjustment
- 2) Decouple charge signal of SiPM, preamplify and multiplex it before the ADC
- 3) The HCAL prototype has to operate in a test beam setup
 → time needed for beam trigger logic ~150 ns
 → need to delay the SiPM signal to wait for the creation of the hold signal
- 4) Need to exploit the SiPM gain calibration possibility
 → minimize ASIC preamplifier noise
 - → minimize noise contribution from SiPM dark rate
 - ➔ shortest possible integration time

ASIC chip properties

DAC Linearity

The first module

216 tiles with SiPM readout

very front-end electronics

DESY test beam: 1st module test

Calibration procedure

MIP calibration of each tile SiPM Gain calibration with 3 GeV e- beam with low intensity LED light ² / nd 1106 / 1220 Prob 0.9914 pixel A_o 3.086e+04 ± 271 mean. 1109 ± 0.6 σ_0 60.96 ± 0.55 pixel 250 **Noise spectrum** 10⁻² A. 2.758e+04 ± 303 mean. 1348 ± 0.7 2 pixels 59.05 ± 0.76 200 A₂ mean, 1.83e+04 ± 291 **Minimum ionizing** 1582 ± 1.0 σ_2 65.53 ± 1.31 10⁻³ A_3 9958 + 282.8 energy 150 mean. 1813 ± 1.8 σ_3 67.31±2.17 A_4 6153 ± 244.7 mean, 2057 ± 2.8 100 84.85 ± 4.26 10⁻⁴ 50 10⁻⁵ 1000 1200 1400 1600 1800 2000 2600 2200 0 500 1500 2500 3500 4500 gain / noise ~ 4

using ASIC chip in 2 modes:

"calibration mode" short shaping time highest gain

15/11/05

(40ns)

"physics mode" longest shaping time (180 ns) medium gain

ECFA ILC 2005 - Marius Groll

LY calibration on module #1

$$LY = \frac{A_{MIP}}{gain} * \frac{A_{LED}^{calib}}{A_{LED}^{physic}}$$

MIP calibration Gain calibration Intercalibration

Lightyield: 13 ± 2 pix/MIP LY spread is as expected

Absorber studies on module #1

PMT amplitude [MIP]

Analysis ongoing:

- uniformity study
- selection of 1,2,3 MIP signals

➔ better determination of the lower part of the SiPM response function

also 5 X₀ data are available

➔ apply SiPM response function for correction

- We are commissioning a multi-channel system
- The major functionality proof of the front-end electronics is the successful application of the calibration procedure
 - MIP and LY calibration applied to ~200 ch.
 - now to be extended to 8000 ch.
 - integration of the final calibration-monitoring LED system
 temperature corrections
- High amplitude data are available:
 → test of the correction for the SiPM response function
 → completion of the full calibration chain

BACKUP

SiPM readout with ASIC chip

The calibration concept

ECFA ILC 2005 - Marius Groll