July 29, 2004

American Linear Collider Physics Group

Victoria Linear Collider Workshop

Muon Detector MAPMT Tests - Calibration R&D

Scintillator Based Muon System R&D for a Linear Collider

Paul Karchin Wayne State University Department of Physics and Astronomy

Personnel:

Paul Karchin, Physicist Alfredo Gutierrez, Research Engineer Ray Brockhaus, QuarkNet Teacher

Motivation

economy of MAPMT's makes possible the large channel count needed for a fine-grained scintillator detector

<1000 channel readout needed for a prototype system

develop expertise to specify a larger system

General Considerations

1 pC charge = gain of ~ 6×10^{6}

1 pC in a 5 ns pulse into a 50 ohm load = 10 mV amplitude

advanced testing and characterization of M-16 and M-64 phototubes by MINOS collaboration, HERA-B RICH, CDF calorimeter

Status of PMT work at WSU

PMT's purchased with FY 2004 DOE funds
(3) H7546B: 64-channel, includes base, \$1750 each
(2) H8711: 16-channel, includes base, \$1369 each

- fiber guides and connector assemblies for 16-channel tubes fabricated
 - single photon calibration of 16-ch tube with pulsed light emitting diode (LED)
 - gain versus HV measured for 16-ch tube
 - test station commissioned at Fermilab

MAPMT Calibration System

LED and PMT Anode Single Sample Waveforms

QVT Gate and PMT Anode Single Sample Waveforms

MAPMT Channel 1 Combined Raw Data

MAPMT Channel 1 Combined Converted Data

Data Analysis

 assume that shape of charge distribution is dominated by Poisson fluctuations at the photocathode

- fluctuations at each dynode stage smear the distribution for $N_{pe} > 0$
 - determine <N_{pe}> and <Gain> from charge distribution Method 1: Zero Counting
 - Prob(0) = sum(pedestal) / sum(ped+signal)

 $< N_{pe} > = -\ln \operatorname{Prob}(0)$

$$\langle Gain \rangle = \langle G \rangle = \frac{\langle Q \rangle}{\langle N_{pe} \rangle} e$$

Method 2: Variance of Charge

 $\sigma^{2} = \langle (Q - \langle Q \rangle)^{2} \rangle$ $\langle G \rangle = \frac{\sigma^{2}}{\langle Q \rangle e}$ $\langle N_{pe} \rangle = \frac{\langle Q \rangle}{\langle G \rangle e}$

Conclusions

- Operation of 16-channel MAPMT is established for single photo-electrons
- Photo-electron yield and single-channel PMT gain are measured using a simple analysis technique
 - In-situ LED calibration of a scintillator/fiber/PMT system is promising

Future Plans

- •Measure PMT response for larger numbers of p.e., compare with factory gain measurements for all channels
 - •Calibrate using fully digital readout
 - •instrument scintillator bar prototypes