Thin silicon: Strips and Pixels development

D. Bortoletto Purdue University

- Thin silicon is interesting for precise tracking and vertexing at the LHC
- Purdue has started R&D both for strip and pixel sensors
- Review of current status and plans for the future

Thin silicon Strip

Received thin silicon strips sensors (fabricated with CDF-L00 masks)

Geometrical specifications

- Readout
 50 μm pitch
- Implant
 25 μm pitch
- Dimension 0.85 x 7.84 cm²
- Bias scheme Polyresistor on both sides
- Implant strip width 8 mm
- Implant strip length 7.6 mm
- Compare: 150, 200 and 300 μm thick strip detectors
 - DC measurements
 - Performance studies using the SVX4 chip developed for the "run 2b " of the Tevatron

Daniela Bortoletto LC-Victoria workshop

First Results: DC measurements

List of measurements:

- 1. IV
- 2. CV
- 3. Coupling capacitance
- 4. Polysilicon resistance
- 5. Interstrip resistance
- 6. Interstrip capacitance

Summary DC measurements

Thickness	300 μm	200 μm
Depletion Voltage		
(at 1KHz)	~ 90 V	~ 30 V
Total leakage current	~ 25 nA	~ 15 nA
Strip leakage current	~ 0.2 nA	~ 0.08 nA
Bulk capacitance	~ 190 pF	~ 260 pF
Coupling capacitance		
(at 1KHz)	~ 87 pF	~ 130 pF
Polysilicon Resistance	~ 0.49 MΩ	~ 1.8 Μ Ω
Interstrip Capacitance		
(at 1MHz)	~ 4.5 pF	~ 4.5 pF
Interstrip resistance	not yet tested	
Daniela Bortoletto LC-Victoria		

7/20/2004

workshop

Future plans

- Connecting sensors to readout electronics (SVX4)
- Study of charge collection efficiency with a laser scanning system
- Irradiation of sensors and further characterization

Thin silicon Pixels

Pixel wafer

- CMS-Pixels sensors
- RD50 PAD structures for SLHC
- Structures to study bump bonding
- 300 µm thick pixel detectors have been received. Thinner sensors available in ~1 month.

Area is dominated by CMS pixel devices compatible with the 0.25 μm chip

Daniela Bortoletto LC-Victoria workshop

CCE measurements of pixels

- Laser measurements at Purdue
- Use 1064 nm laser to study the CCE of pixel systems
 - Beam size about 10 μm
 - Acquiring shorter wavelength laser to study SCSI

LASER setup

Laser spot taken with IR camera

- wavelength 1064 nm
- · the spot size \approx 10 μm (focused)
- focal length ~ 2.18 cm

Motion controller in x-y direction

- resolution ~1 μm

Daniela Bortoletto LC-Victoria workshop

daptor board

ensor-Roc module

Sensor Geometry

Implanted n+-pixel (metalized)~98% P-stops rings 8µm wide with 12 µm gaps Metal grid on the pside Contact between

the AI and n+ pixels

Daniela Bortoletto LC-Victoria workshop

7/20/2004

A laser scan

Conclusions

- Thin detectors in hand (strips)
- DC measurements started
- Setup for CCE measurements for pixels already working
- Waiting for SVX4 chips to measure CCE on strip sensors
- Study of mechanical assembly and bumpbonding requires funding which is currently not available
- MC studies of tracker and vertex detector options necessary to guide R&D