

Full-size Monolithic Active Pixel Sensors in SOI Technology - design considerations, simulations and measurements results

Halina Niemiec*

on behalf of:

M. Jastrzab, W. Kucewicz, H. Niemiec, M. Sapor AGH – University of Science and Technology, Krakow, Poland

K. Kucharski, J. Marczewski, D. Tomaszewski Institute of Electron Technology, Warsaw, Poland

*Scholarship holder of the Foundation for Polish Science

- Introduction to monolithic active pixel sensors in SOI technology
 - Basic concept of the integration of the readout electronics and particle detector using SOI wafers
 - SOI detector test structures as a preliminary validation of SOI sensor concept
- Design of the full-size SOI sensors
 - Main features of full-size SOI sensors
 - Layout optimization towards reduction of the interaction of the readout and sensitive part of the active sensor
- First measurements of full-size SOI sensors

Integration of pixel detector and readout electronics in SOI technology

Basic Idea

Solution developed within SUCIMA project

- Wafer-bonded substrates (with high resistivity support layers)
- No wafer pre-processing
- Pixel implantations created in small cavities obtained by anisotropic etching of <100> silicon
- > Semi-bulk CMOS technology on thick SOI

First step of development - SOI detector test structures

Basic concept of the SOI detector was first validated in several iterations of simple detector test structures:

- matrices of 8x8 sensor cells
- \blacksquare Cell dimensions 140x122 μm^2
- Readout channel similar to 3T cell
- No digital control blocks

Alpha particles recorded with SOI detector test structures

- Charge to voltage gain:
 3.6 mV/fC
- Input dynamic range:
 2.4 fC to 185 fC
- Leakage currents: 10 to 100 nA/cm²

Manufacturing of full-size prototypes of SOI

- First lots of the full-size prototypes were produced on 400 µm thick SOI wafers provided by Analog Device Belfast
- Non-standard, semi-bulk technology with min feature size of 3 µm, two metal and one polySi levels was used

Device cross-section

 \rightarrow the same like for the test structures

Detector substrate

- High resistive
 (> 4 kΩcm, FZ)
- 400 μm thick

Device layer

- Low resistive
 - (9-13 Ωcm, CZ)
- 1.2 μm thick

BOX

1.2 μm thick

Full-size SOI sensors – main features

- Fully functional detectors with implemented readout blocks on chip
 - 128 x 128 readout channels
 - area 2.4 cm x 2.4 cm
 - 4 independent sub-matrices
 - Operation in charge integration mode
 - Optimised for medical applications

- "Baby Detector" 48 x 48 readout channels, area 1.2 cm x 1.2 cm, no digital control blocks
- Column, row and reset signals generated by Xilinx CPLD (XC95288XL)

Full-size SOI sensors – design overview

Detector cell

- Dimensions 150x150 µm²
- Similar to 3T cell, but consists of both transistor types

> Readout

AGH

- Serial, analogue output (for larger prototypes 4 parallel outputs)
- Double sampling for external CDS
- Sensor dead-time below 1% with respect to integration time
- Basic parameters according to design
 - Dynamic range: up to 500 fC (but may be limited by leakage current)
 - Charge to voltage gain: 3.6 mV/fC
 - Readout frequency: up to 4 MHz

Sensor optimisation from the point of view of the interaction between detector and readout part

➤ In MAPS sensors the detector sensitive part and the readout electronics are manufactured in direct proximity ⇒ interaction of these two parts has to taken into account during sensor design.

- > Two effects has to be investigated
 - Influence of the biasing of the electronics of the potential distribution in the detector substrate
 - Crosstalk between electronics and detector substrate
- In some earlier developments special shielding structure was proposed to over come the problems of the interaction of the detector and electronics – complicated technology and wafer pre-processing is required. We want to avoid additional technological steps.

S Corrections of the second se

Simulations of electrostatic potential distribution in the detector substrate

How can the electronics influence detector operation?

- Sensor configuration small pixel implantations (25 µm wide). Over gaps between them electronics is operating.
- ➤ Source/drain implantations far from BOX interface, electronics substrate is biased ⇒ voltage applied to S/D should not affect significantly the potential distribution in the detector.
- But voltage applied to the electronics substrate and wells may be important.
- ➤ Especially dangerous areas below Pwells – they may reach BOX and are connected to the lowest potential in the circuit ⇒ may cause local potential minima, which may disturb the collection of the charge generated underneath.

Simulations performed with ISE-TCAD

Simulated model

- For basic SOI sensor structure distortion of electric field may be observed
- The effect on the detector operation will strongly depend on the sensor cell layout and well profile (if it reaches BOX)

Simulations of electrostatic potential distribution in the detector substrate

Solution of the problem – without changing the sensor layout or the technology – usage of wafers with a buried implanted layer (blanket).

AGH

- Blanket shallow, highly doped region at the interface between the device layer and BOX; used for impurities gettering in silicon film.
- In SOI sensor buried implanted layer may play the role of a shield.

Simulations of electrostatic potential distribution in the detector substrate

- IceMos Technology one of the suppliers of the SOI wafers for the SOI project – provides SOI wafers with customized buried implanted layers – it is a standard option.
- First batch of the full-size SOI sensors was produced on wafers without blanket, but for future production buried implanted layers are going to be used.
- The implantation dose and energy will have to optimised to form efficient shielding without changing electronics performance.

Potential distribution for SOI sensor structure with shallow buried implanted layer - arsenic with top concentration of 10¹⁸/cm³

Electronics-detector substrate crosstalk

Sudden changes of the voltage signal levels in the front-end electronics may cause injection of parasitic current signals into the detector substrate through the BOX.

AGH

- Possible source of such interferences in SOI sensors:
 - digital part of the chip it becomes important for full-size prototypes
 - the steering lines of the readout cells
 - these electrodes of the transistors in readout cells on which the potential may suddenly change during the circuit operation
- To minimize the crosstalk, the layout of the prototypes of the sensor had to be optimized. Remaining interferences can be subtracted as a systematic noise.

Reducing interferences from digital part

selection lines

row

nrow

Electronics-detector substrate crosstalk

Reducing interferences from remaining steering lines – resent line

- Substrate densely grounded along the reset line on the layout of the chip substrate contact and line are at the distance of 4.5 µm
- In the proposed solution of the SOI sensor thick device layer and BOX are used, which should also allow reduce crosstalk
- To investigate the effectiveness of this approach mixed-mode simulations were performed with ISE-TCAD

AGH

Full-size SOI sensors – first tests

- One batch (3 lots) of full size SOI sensors was produced. Chips from one lot tested – six larger and 4 smaller sensors.
- Problems with the production yield for the best of large sensor proper readout operation observed for 3 quarters, one of smaller sensor has relatively good performance
- > Very preliminary test results:
 - Senor sensitivity observed with laser pointer and α particles
 - Readout frequency up to 4 MHz, digital part tested up to 10 MHz without any problems

<u>Visualization of the</u> <u>readout results</u>

Detector: 128x128 cells

Laser pointer light shined on two different quarters of the detector

Full-size SOI sensors – first tests (cont.)

- MIP response was measured with "baby detector" (48x48 chan.)
- > Tests performed with Sr90 source
- Sensor connected to SUCIMA imager DAQ system
- V_{DET}=115 V, t_{int}=2.3 ms
- > Noise per pixel: 1.7 to 2.5 ADC
- Most probably cluster height: 28 ADC (corresponding to 14 mV)
- Due to long integration time signal corresponding to more than one detected particle are visible.

Measured distribution of beta particles from ⁹⁰Sr source. Green line -Landau fit corresponding to a single MIP particle; blue line - sum of Landau fits corresponding to up to 3 MIP particles recorded during integration time.

Summary

AGH

- > First full-size MAPS in SOI technology were designed and produced.
- For the new sensors the methods of the reduction of the interaction between the readout and the radiation sensitive parts of the active sensor were investigated:
 - Use of the SOI wafers with n+ buried implanted layers was proposed as an efficient method of shielding the readout circuitry form the detector substrate.
 - Dense device layer polarization and usage of parallel steering lines was suggested for the reduction of the electronics-detector crosstalk.
- First tests of full-size indicated some problems with production yield. The possible reason are observed variation of device layer thickness (of order of 200%) related to the thinning down method use by wafers supplier.
- For good structures proper readout operation and sensitivity to ionising radiation was observed.
- MIP signal was measured obtained cluster height in good agreement with predicted charge to voltage gain.
- > Directions of further development:
 - Thanks to the kindness of the DEPFET group from Bonn we have next sensors assembled – the performance and reliability of these sensors will be investigated.
 - For the next batches of sensors the layout of the pixel cavity will be improve to obtain better reliability of the sensors.
 - Interaction of the readout electronics and the detector substrate, as one of the most specific aspect of the SOI implementation, will have to be investigated experimentally.