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Linear Collider Flavour Identification: Activities

o LCFI Outline
– Simulation and Physics Studies
– Sensor Development
– Readout and Drive Electronics 
– External Electronics
– Integration and Testing
– Vertex Detector Mechanical Studies
– Test-beam and EMI Studies

LCFI is active in the development of the full vertex detector
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LCFI Physics Studies

o Identification of b/c quarks
– ZVTOP algorithm plus neural net
– Modest improvement in b tagging 

over that achieved at SLD.
– Improvement by factor 2 to 3 in 

charm tagging efficiency.
– Charm tag interesting e.g. for 

Higgs BR measurements.

o Identification of quark charge
– Must assign all charged tracks to 

correct vertex.
– Multiple scattering critical, 

lowest track momenta ~1 GeV.
– Sum charges associated with b 

vertex:
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Physics Studies: From MIPS to Physics

The sensors studied are new devices; we need to model how they work.  
o We will need to develop understanding of:

– Charge generation, propagation, and collection in new sensor types
– Cluster finding, sparsification, fitting to tracks
– Background effects and environment 

Provides feedback to sensor and electronics design 
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Physics Studies: From MIPS to Physics

o Study factors affecting flavour identification and quark charge
– Optimise flavour ID and extend quark charge determination to B0.
– Examine effects of sensor failure.
– Detector alignment procedures and effects of misalignments.
– Polar angle dependence of flavour and charge identification.

Provides feedback to mechanical design; can shape overall detector design, 
e.g. additional layers, increased detector length
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Physics Studies: From MIPS to Physics

o With complete simulation, study physics processes for which vertex 
detector is crucial, for example:
– Higgs branching fractions, requires flavour ID.
– Higgs self-coupling, requires flavour and charge ID.
– Charm and bottom asymmetries, requires flavour and charge ID.

Plan to be prepared to react to discoveries at the LHC, and to show 
detector impact on physics.
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Tracking and Timing Features at the Linear Collider
What sort of tracking and vertexing is needed for the Linear Collider?
o Vertex detectors for the Linear Collider will be precision devices

– Need very thin, low mass detectors
– No need for extreme radiation tolerance
– Need high precision vertexing eg ~20 µm pixels
– Can not simply recycle technologies used in LHC or elsewhere 

o High pixelization and readout implications
– 109 pixels: must break long bunch trains into small bites (2820/20 = 141)
– Read out detector many (ie 20) times during a train susceptible to pickup
– …or store info for each bite and read out during long inter-train spaces

337 ns

x2820

0.2 s

0.95 ms

Bunch Train

Bunch Spacing
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Sensors for the ILC vertex detector

Read out during the bunch train:

o Fast CCDs
– Development well underway 
– Need to be fast (50 MHz)
– Proven track record at SLD
– Need to increase speed, size
– Miniaturise drive electronics

Read out in the gaps:

o Storage sensors
– Store the hit information, 

readout between bunch trains 
(exploit beam structure) 

– Readout speed requirements 
reduced (~1MHz)

– Can design to minimise sensitivity 
to electromagnetic interference

– Two sensor types under study; 
ISIS and FAPS

ILC long bunch trains, 
~109 pixels, relatively 

low occupancy
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Sensors:  Column-Parallel CCDs

o Fast Column-Parallel CCD’s (CPCCD) 
– CCD technology proven at SLD, but LC 

sensors must be faster, more rad-hard
– Readout in parallel addresses speed 

concerns
– CPCCD’s feature small pixels, can be 

thinned, large area, and are fast
– CPC1:  Two phase, 400 (V) × 750 (H)

pixels of size 20 × 20 µm2

CPCCD1
(e2v)

“Classic CCD”
Readout time ≈

N×M/Fout

N

M

N

Column Parallel 
CCD

Readout time = 
N/Fout

Bump-Bonded
CPCCD + Readout
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Column-Parallel CCDs:  Recent Results

o First-generation tests (CPC1):
– Noise ~100 e− (60 e− after filter).
– Minimum clock potential ~1.9 V.
– Max clock frequency above 25 

MHz (design 1 MHz).
– Limitation caused by clock skew

Extremely successful!

o Next generation in production (CPC2):
– Busline free design (two-level metal) 
– Tests stitching, and choice of epi

layers for varying depletion depth
– Range of device sizes for test of 

clock propagation (up to 50 MHz)
– Large chips are nearly the right size
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Storage Sensors:  ISIS

o Can store charge for many crossings
– ISIS: In-situ storage image sensor
– Signal stored safely until bunch 

train passed
– Test device being built by e2v

o “Revolver” variant of ISIS
– Reduces number charge transfers
– Increases radiation hardness and 

flexibility

No shortage of good ideas

20 µm

20 
µm
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Storage Sensors:  FAPS
o FAPS architecture

– Flexible active pixel sensors
– Adds pixel storage to MAPS
– Present design “proof of principle” test structure
– Pixels 20x20 µm2, 3 metal layers, 10 storage cells MAPS

FAPS

o Results with initial design:
– 106Ru β source tests: Signal to noise 

ratio between 14 and 17.
– MAPS shown to tolerate high radiation 

doses.
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Storage Sensors:  FAPS plans

o Next step:  Parametric test sensor 
– 64x64 identical pixels (at least) 
– Variants of write and read amplifiers and in 

storage cells
o Will evaluate pixels in terms of 

– Noise
– Signal
– Radiation hardness
– Readout speed

o Optimisation is between 
– size of the pixel
– readout speed 
– maximum amount of time available for readout
– charge leakage 

Read/Write 
variations 

Memory cell 
variations 
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Readout Electronics:  CPR2 Readout Chip

o Designed to match the Column Parallel 
CCD (CPC1 or CPC2) 
– 20µm pitch, maximum rate of 50MHz
– 5-bit ADC, on-chip cluster finding 
– Charge and voltage inputs

o New features for the CPR2 include
– Cluster Finding logic, Sparse read-out
– Better uniformity and linearity 
– Reduced sensitivity to clock timing 
– Variety of test modes possible
– 9.5 mm x 6 mm die size, IBM 0.25µm
– Recently delivered, testing beginning

Major piece needed for a full module



Steve Worm – LCFI May 26, 2005 16

Vertex Detector Mechanical Studies

o Thin Ladder (module) construction Goals are ambitious;
– 0.1 % X/X0 Thinned silicon sensor, ultra-light support
– Wire or Bump bondable, robust under thermal cycling

o Materials and mechanical support technology under study
– Carbon fibre, carbon foam, Silicon carbide foam, diamond, beryllium, etc.
– Reticulated vitreous carbon (RVC) foam; 3% relative density, 3.1 mm = 0.05% X0
– Several interesting new materials available

support 
technologies

materials 
studies

metrology
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Mechanical Studies:  Support Structures

o Thin Ladder Mechanical Considerations
– Stresses introduced in processing 

imply “unsupported” Si > 50µm.
– “Stretching” maintained longitudinal 

stability, but insufficient lateral support.
– Re-visit using thin corrugated carbon fibre 

to provide lateral support.
o Measurement and Stress Analysis

– Supporting CCD on thin substrate studied 
at low temperatures.

– Simulation (FEA) provides good guide.
– Under study: sandwiched structure  

with foams.

FEA analysis measurement
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Vertex Detector Global and Thermal Studies 

o Mounting schemes, layout, services, cooling etc 
– Must all be shown to be compatible with candidate technology
– Large dependence on decisions in other work (e.g. sensors, electronics)
– Thermal test stand under construction

o Many mechanical challenges ahead
– How to hold the ladders
– Full detector layout
– Thermal studies 
– How to cool the ladders 
– Stress analysis for candidate 

ladder support

Many interesting mechanical challenges
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Testbeams and Electromagnetic Interference

LCFI is actively developing test-beam capability with an aim to:

o Understand the impact of the environment at the ILC on our sensors.
– Beam induced RF had a serious impact on the SLD vertex detector.
– The MDI panel of the world-wide study has identified EMI as one of the key 

issues to be addressed.
– Collaborating with SLAC, US, and Japanese groups

o Test full-sized prototype detector modules in a test-beam, including the 
study of:
– Single hit efficiency
– Influence of high magnetic fields
– Resolution
– Readout speed
– Sparsification algorithms
– Noise susceptibility
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Linear Collider Flavour Identification:  Proposal and Goals

The LCFI collaboration has enjoyed 3 years of success in ILC vertex detector R&D

o The new programme of work moves us from Research into prototype 
detector Development
– Overall goal is to have a fully-functional and test-beam proven detector 

module, including sensors, readout, and mechanical support, ready in 2010.
– The challenge is to take bench-top devices and 

develop them into fully functioning modules 
– Successful development will put us in a good 

position to help build the ILC vertex detector

o New proposal includes
– 5 institutions
– 58 people, plus several students
– 7 new RA posts
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Linear Collider Flavour Identification:  Summary

o Progress made in understanding 
physics accessible at the ILC via:
– Flavour identification.
– Determination of b, c charge.

o Column Parallel CCD development 
progressing:
– LCFI will soon have sensors of scale 

close to that required for the ILC.
– Beginning to address remaining 

challenge of low mass drive 
circuitry.

o Storage sensor studies initiated: 
looks extremely promising

o Mechanical studies have 
demonstrated:
– Unsupported Si will not result in 

lowest mass sensors.
– Emphasis shifted to new 

materials. 
o Milestones met or surpassed in 

last three years.
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Bump-Bonding, Radiation Damage

o Bump-bonding
– Standard in semiconductor packaging… but not for 

small quantities, large devices, thinned devices… 
– Necessary for dense, low-inductance connections
– Primarily overseen by RAL, but Glasgow and 

Liverpool groups have experience

o Radiation Damage studies
– For any new vendor we will need to characterise the 

production process for resistance to radiation 
– Test bulk and surface damage for each sensor type
– Look for charge transfer inefficiency (CTI) in 

CPCCD, ISIS
– Much individual testing needed (time consuming)
– Comparison to simulation, feedback to sensor design
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Driver Design Issues for CPCCD

o High Current
– Problem supplying ~10A to driver IC 

(thick wires)
– Solution may be capacitive storage 

(charged at low rate between bunch 
trains, discharged at high rate when 
CCD is clocked during bunch train)

o Waveform shape and timing
– The driver IC will provide a high 

degree of control over the waveform 
– Shape and timing of CCD clock could 

be fine tuned to match readout IC 
timing

– Adjustable clock drive voltage  (aim to 
minimise power, without degrading 
charge transfer efficiency)

Driver
circuit
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Storage Sensors – ISIS

o ISIS Sensor details:
– CCD-like charge storage cells in CMOS technology
– Processed on sensitive epi layer
– p+ shielding implant forms reflective barrier (deep implant)
– Dual oxide thickness possible (Jazz Semiconductor)
– Overlapping poly gates not likely in CMOS, may not be needed

o Basic structure shown below:

p+ shielding implant
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buried channel (n)

Charge collection

p+ well 

reflected charge

reflected charge
High resistivity epitaxial layer (p)

storage 
pixel #1

sense 
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row 
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reset 
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VDD
photogate

transfer
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Reset transistor Row select transistor

output
gate
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load

storage 
pixel #20
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Storage Sensors – ISIS

o Standard CMOS process doesn’t allow overlapping polysilicon or two 
thicknesses of oxide.
– Modify dopant profiles to produce deeper buried channel: single oxide
– Charge transfer is efficient, despite non-overlapping gates

Sensor properties and design under study, looks promising

Charge transfer 
(ISE-TCAD simulation)
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