Evidence for $B \to K^* l^+ l^-$ and Measurement of $B \to K l^+ l^-$

International Europhysics Conference on High Energy Physics Aachen, July 17-23, 2003 Anders Ryd for the BABAR Collaboration

Outline:

- Physics motivation
- Analysis strategy
- Results and conclusions

Flavor changing neutral currents $b \rightarrow sl^+ l^-$

• These decays are highly suppressed: in the SM they are forbidden at tree level and proceed via loop diagrams

• *E.g.*, supersymmetric particles can contribute to the rate

Theory predictions for $B \rightarrow K^{(*)} l^+ l^-$

B reconstruction

Analysis overview

- This analysis is based on the Run 1 + Run 2 datasample of $(88.5 \pm 0.9) \times 10^6 B \overline{B}$ pairs.
- •We fully reconstruct B candidates in the modes
 - $B^{+} \rightarrow K^{+} l^{+} l^{-} \qquad B^{0} \rightarrow K^{*0} l^{+} l^{-}, \quad K^{*0} \rightarrow K^{+} \pi^{-}$ $B^{0} \rightarrow K^{0}_{S} l^{+} l^{-} \qquad B^{+} \rightarrow K^{*+} l^{+} l^{-}, \quad K^{*+} \rightarrow K^{0}_{S} \pi^{+}$

where *l* is either an *e* or a μ and $K_S^0 \rightarrow \pi^+ \pi^-$

- Leptons candidates are selected with tight particle identification
 ~0.2% pion fake rate for electrons and ~2% pion fake rate for muons.
 For electrons we recover bremsstrahlung photons.
 Charged kaons are identified by the DIRC.
 The signal yields are extracted using an unbinned maximum likelihood fit
 - in $m_{\rm ES}$ and ΔE .
 - In the K^* modes we in addition use the $K\pi$ mass in the fit.

Backgrounds

•Combinatorial background from $B\overline{B}$ and $q\overline{q}$ events are suppressed using a likelihood and a Fisher discriminant respectively.

Peaking backgrounds arise from several possible sources

•Hadronic *B* decays where hadrons are misidentified as leptons

• In the muon mode we veto $B \rightarrow D\pi$ decays.

• Charmonium presents a large possible background and we veto these events in the m_{ll} vs. ΔE plane

Hadronic peaking backgrounds

•Processed data without applying any lepton ID

- •Weight histograms with fake rates and fit for background yields
 - Backgrounds neglible in the electron channels

$B \rightarrow K \pi \pi$, $KK \pi$, KKK, $D \pi$

0.007 events

0.27 events

0.001 events

0.05 events

Peaking backgrounds

• We have considered the following sources of peaking backgrounds

Charmonium control samples

We reverse the charmonium veto and use the J/ψ events as a control sample for efficiency and checks of kinematic distributions

We find good agreement in our check using the charmonium control samples

ΔE vs. $m_{\rm ES}$ in the $B \rightarrow K l^+ l^-$ modes

Combined $B \rightarrow Kl^+l^-$ fits

 $-0.11 < \Delta E < 0.05 \, \text{GeV}$

Preliminary

 $5.2724 < m_{\rm ES} < 5.2856 \,{\rm GeV}$

Dilepton mass distributions

Charmonium vetoes

ΔE vs. $m_{\rm ES}$ in the $B \rightarrow K^* l^+ l^-$ modes

Preliminary

Combined $B \to K^* l^+ l^-$ fits

Preliminary

$0.817 < m_k < 0.967 \,\text{GeV} \\ -0.11 < \Delta E < 0.05 \,\text{GeV}$

 $5.2724 < m_{\rm ES} < 5.2856 \,{
m GeV}$ $0.817 < m_{k\pi} < 0.967 \,{
m GeV}$

 $5.2724 < m_{\rm ES} < 5.2856 \,{
m GeV}$

 $-0.11 < \Delta E < 0.05 \,\mathrm{GeV}$

$$Br(B \to K^* l^+ l^-) = (1.40^{+0.57}_{-0.49} \pm 0.21) \times 10^{-6} \quad (3.0 \,\sigma)$$

Combined $B \to K^* l^+ l^-$ fits

• For the combined fits in the *K** modes we use the constraint

$$\frac{Br(B \to K^* e^+ e^-)}{Br(B \to K^* \mu^+ \mu^-)} = 1.33$$

as given by Ali et al. (2001).

• We quote the combined $B \rightarrow K^* l^+ l^-$ result for the electron channel.

Systematic uncertainties and significance

- Multiplicative systematic uncertainties do not affect the significance of the signal. We have considered:
 - Tracking and PID efficiencies
 - Model dependence, Monte Carlo statistics
- Additive systematic uncertainties arise from the fit and do affect the significance. Parameters for the background shape are determined in the fit to the data and do not contribute to a systematic uncertainty. Systematic effects that we have considered:
 - Signal shape parameters, mean and width
 - Radiative tail in electron modes
 - Background shape parametrization
 - Peaking backgrounds
- The significance was evaluated by combining the variations that lead to a decrease in the signal significance.

Results

A.	Ryd	
	~	

Conclusions

•Analyzed the BABAR Run 1 and Run 2 data sample of $(88.5 \pm 0.9) \times 10^6 B \overline{P}$ airs.

•We have added the $K\pi$ mass to the likelihood fit for the $B \to K^* l^+ l^{\bar{m}}$ modes and obtained the preliminary results: •Clear signal (~7 σ) for $B \to K l^+ l^-$

 $Br(B \to K l^+ l^-) = (0.68^{+0.17}_{-0.15} \pm 0.04) \times 10^{-6}$ •Evidence (3.0 σ) for $B \to K^* l^+ l^-$

 $Br(B \rightarrow K^* l^+ l^-) = (1.40^{+0.57}_{-0.49} \pm 0.21) \times 10^{-6}$

Backup slides

Multiplicative systematic uncertainties

Particle ID systematics checked in our particle ID blind control samples