
Anders Ryd 1Introduction to using EvtGen, March 2, 2004

An Introduction to Using EvtGen

Anders Ryd
March 2, 2004 Alea iacta est, “The die is cast”, Julius Ceasar

Jan. 10, 49BC as he crossed Rubicon.

Anders Ryd 2Introduction to using EvtGen, March 2, 2004

An Introduction to Using EvtGen

Anders Ryd
Cornell U.

March 2, 2004

Outline:
What problems EvtGen can and can not solve
Selection algorithm
Physics processes that are implemented
How to write your own physics modules
Using EvtGen in CLEO-c

This talk borrows much from a tutorial D. Lange and I gave for an
LHC generator workshop in the summer of '03

Anders Ryd 3Introduction to using EvtGen, March 2, 2004

Motivation

Why should you care about EvtGen in CLEO-c?
We have been generating the 'million MC' samples
using Evtgen.
Further simulation of hadronic decays in CLEO-c will
be done with EvtGen.
Continuum simulated via EvtGen using the “Lund
Area Law”.
Radiative return events are simulated via EvtGen.
EvtGen is integrated in the suez framework.

Anders Ryd 4Introduction to using EvtGen, March 2, 2004

Sequential decays
• Many decays have interesting sequential decay chains:

• Want to correctly simulate these decay chains while only
implementing the nodes in the decay tree.

Anders Ryd 5Introduction to using EvtGen, March 2, 2004

CP violating decays

• B->J/K*0 (K*0->K00)

– Angular correlations
and time dependence

Anders Ryd 6Introduction to using EvtGen, March 2, 2004

Decay amplitudes are used
instead of probabilities

EvtGen works with amplitudes to correctly handle
sequential decays:

Nodes in the decay tree are implemented as “models”.
The framework of EvtGen handles the bookkeeping
needed to correctly generate the full decay tree.

Anders Ryd 7Introduction to using EvtGen, March 2, 2004

Selection algorithm (I)

• Generate the B->D*l decay

• Compare with maximum probability and accept or reject
generated B->D*l decay.

– Maximum probability specified in code.

• Can instead be generated on the fly, however this
leads to the output of event N depending on the
random number sequence used to determine the
max probability.

• Regenerate B->D*l decay until combination is accepted.

Anders Ryd 8Introduction to using EvtGen, March 2, 2004

Selection algorithm (II)

• Average over spin and calculate the D* spin density
matrix:

• Generate the D*->D decay

• Compare with maximum probability and accept or reject
generated D*->D decay

• Regenerate D*->D decay until accepted. The B->D*l
decay is not regenerated.

Anders Ryd 9Introduction to using EvtGen, March 2, 2004

Selection algorithm (III)
• Calculate the spin density matrix for the

• Where:

• Generate the decay

• Compare with maximum probability and accept or reject generated
 decay.

• Regenerate decay until accepted. The B->D*l and D*->D
decays are not regenerated.

Anders Ryd 10Introduction to using EvtGen, March 2, 2004

Advantages to using decay
amplitudes

• Implementation of decay models is simplified by using
amplitudes instead of probabilities.

• Keeping track of the spin density matrices allows us to
generate each node of the decay chain independently.
– More efficient
– Avoids the need to determine uncountable # of

maximum probabilities
• Generalizes to arbitrarily long decay chains
• Calculation of probabilities and spin density matrices are

done by the framework. Models specify only the decay
amplitudes.

• However: No interference between particles on different
branches of decay tree.

Anders Ryd 11Introduction to using EvtGen, March 2, 2004

States in EvtGen
EvtGen works with amplitudes. The amplitudes are specified as
amplitudes between the initial and final state in a set of basis vector
provided by EvtGen.
EvtGen uses the following representation for the lower spin states:

Also J=3/2 EvtRaritaSchwinger 4 states
Higher spin states are represented by a generic helicity state basis

Anders Ryd 12Introduction to using EvtGen, March 2, 2004

EvtGen decay algorithm

• Configuration specified by input files at run time.

– Users override generic DECAY.DEC to generate MC
as needed.

1. Input: Parent particle Id and p4

2. Determine decay tree (completely)

3. Determine mass of each particle in tree

4. Accept/reject to determine kinematics

Input from
DECAY.DEC

Input from
evt.pdl

Anders Ryd 13Introduction to using EvtGen, March 2, 2004

The decay table (DECAY.DEC)
• We continue to increase the ability to control EvtGen via

$C3_DATA/DECAY.DEC

– Decays and branching fractions

– Particle masses, widths, lineshapes

– Try to avoid hardwiring numbers that control decay
models, instead specifying them as arguments.

– Control of usage of PHOTOS packages

Additional control avoids the need to change software to
produce MC for systematic studies

Anders Ryd 14Introduction to using EvtGen, March 2, 2004

Defining particle decays

Decay D*+

0.683 D0 pi+ VSS;

0.306 D+ pi0 VSS;

0.011 D+ gamma VSP_PWAVE;

Enddecay

Defines three decay modes of the D*+

Branching fractions will be rescaled to sum to 1.0

Particle to decay

Decay model
Branching
fraction

Daughters

End of decay stanza
“;” to end each
mode definition

Anders Ryd 15Introduction to using EvtGen, March 2, 2004

Particle “aliases”
Alias MyD*+ D*+

Decay B0
1.0 MyD*+ pi- SVS;

Enddecay

Decay MyD*+
1.0 D0 pi+ VSS;

Enddecay

• In this case, all B0s will decay to D*+, with D*+->D0+.
However, other D*+ in the event will decay as defined in
DECAY.DEC.

Anders Ryd 16Introduction to using EvtGen, March 2, 2004

Model arguments

Some models takes arguments:

Decay B0
1.00 D*- e+ nu_e PHOTOS HQET 0.92 1.18 0.72;
Enddecay

These arguments can be accessed in the model using the
methods:

getNArg() returns the number of arguments
getArg(i) returns the ith argument

HQET parameters

Anders Ryd 17Introduction to using EvtGen, March 2, 2004

evt.pdl format
Particle properties are defined in $C3_DATA/evt.pdl:

Add p Lepton mu- 13 0.1056584 0 0 -3 1 658654. 13
Add p Lepton mu+ -13 0.1056584 0 0 3 1 658654. 0
Add p Meson pi+ 211 0.139570 0 0 3 0 7804.5 101
Add p Meson pi- -211 0.138570 0 0 -3 0 7804.5 0
Add p Meson rho+ 213 0.7685 0.151 0.4 3 2 0 121
Add p Meson rho- -213 0.7685 0.151 0.4 -3 2 0 0
…..
• 4th column=particle name, 5th=stdhep number, 6th=mass

(GeV/c2), 7th=Width (GeV/c2), 8th=Mass cutoff,
9th=3*charge, 10th 2*spin, 11th=ct (mm), 12th Lund-KC
number (for Pythia interface)

Anders Ryd 18Introduction to using EvtGen, March 2, 2004

Available decay models
• General purpose models that decay according to specified

helicity or partial wave amplitudes

– Handle decays to two body final states with arbitrary
spins. Amplitudes specified at run time.

• Specific CP violating models

• Semileptonic form-factor models

• Dalitz decays

– Specific: D, , 0,
– General Pseudoscalar -> 3 Pseudoscalar

• B->Kll, b->s
• Use PHOTOS package for final state radiation.

– On by default for all decays.

Anders Ryd 19Introduction to using EvtGen, March 2, 2004

Semileptonic decays

HQET - Heavy Quark Effective Theory inspired form factor
param.
ISGW, ISGW2 - Quark model based prediction, Isgur, Scora
et al.
MELIKHOV - Quark model based prediction
SLPOLE - Generic spcification of form factors based on a
lattice inspired parametrization.
VUB - For generic b->ulnu decays, uses JetSet for
fragmentation.
GOITY_ROBERTS - Decays to non resonant D(*)pi lnu.

BABAR uses, HQET, ISGW2, VUB, and GOITY_ROBERTS
in its simulation.
ISGW2 should support D, D_s and B_s decays as well as B
decays.

Anders Ryd 20Introduction to using EvtGen, March 2, 2004

Generic amplitudes

HELAMP, PARTWAVE - generic two-body decays
specified by the helicity or partial wave amplitudes.
SLN - Decay of scalar to lepton and neutrino.
PHSP - N-body phase space.
SVS, STS - Scalar decay to vector (or tensor) and scalar.
VSS, TSS - decay of vector or tensor particle to a pair of

scalars.
VLL, SLL - Decay of vector or scalar to two leptons.
VSP_PWAVE, vector to scalar and photon, e.g.,

D*->D

Anders Ryd 21Introduction to using EvtGen, March 2, 2004

Special matrix elements
BTOXSGAMMA - b->X

s
 with JetSet fragmentation.

BTOXSLL - b->X
s
ll with JetSet fragmentation.

D_DALITZ - 3-body D-decays with substructure.
ETA_DALITZ - 3 with measured dalitz amplitude.
KSTARNUNU - B->K*nunubar
LNUGAMMA - B->lnu
OMEGA_DALITZ - Dalitz structure in the ->3 decay
PHI_DALITZ - Dalitz structure in the->3 decay
PTO3P - scalar to 3 scalars decay where you can specify
 intermediate resonances
TAUHADNU - hadronic 1, 2, and 3 pion final states.
TAULNUNU - leptonic tau decays.
VSS_BMIX - Upsilon(4S) to BBbar, including mixing.
VVPIPI - decay of vector to vector and two pions, e.g.

psi'->psi pi pi.
VECTORISR - ISR production of vector mesons:

e+e- -> V

Anders Ryd 22Introduction to using EvtGen, March 2, 2004

Writing new Physics Models

This part of the tutorial deals with writing new models
A model is a C++ class that implements the
calculation of amplitudes for a given process.
This class has to be registered with the frame work
in order to be used.
The model has a name which is used to indentify the
model in the decay table.

There are currently about 80 decay models
implemented in EvtGen.

Anders Ryd 23Introduction to using EvtGen, March 2, 2004

Example decay: V->SS

To illustrate how a decay model is written we will use the
example of the decay of a vector particle to two scalars. The
amplitude for this decay is given simply by:

Where is the polarization vector of the initial vector meson
and v is the four-velocity of one of the final state particles.

We will illustrate how we write the class, EvtVSS, to
implement the calculation of this amplitude for a model
named 'VSS'.

A= v

Anders Ryd 24Introduction to using EvtGen, March 2, 2004

EvtVSS.hh (simplified)
#ifndef EVTVSS_HH
#define EVTVSS_HH

#include "EvtGenBase/EvtDecayAmp.hh"

class EvtParticle;

class EvtVSS:public EvtDecayAmp {

public:
 EvtVSS() {}
 virtual ~EvtVSS();

 void getName(std::string& name);
 EvtDecayBase* clone();

 void decay(EvtParticle *p);
 void init();
 void initProbMax();

};
#endif

Anders Ryd 25Introduction to using EvtGen, March 2, 2004

EvtVSS.cc
#include <stdlib.h>
#include "EvtGenBase/EvtParticle.hh"
#include "EvtGenBase/EvtGenKine.hh"
#include "EvtGenBase/EvtPDL.hh"
#include "EvtGenBase/EvtVector4C.hh"
#include "EvtGenBase/EvtVector4R.hh"
#include "EvtGenBase/EvtReport.hh"
#include "EvtGenModels/EvtVSS.hh"
#include <string>

EvtVSS::~EvtVSS() {}

void EvtVSS::getName(std::string& model_name){
 model_name="VSS";
}

EvtDecayBase* EvtVSS::clone(){
 return new EvtVSS;
}

void EvtVSS::initProbMax() {
 setProbMax(1.0);
}

void EvtVSS::init(){
 // check that there are 0 arguments
 checkNArg(0);

 // check that there are 2 daughters
 checkNDaug(2);

 // check the parent and daughter spins
 checkSpinParent(EvtSpinType::VECTOR);
 checkSpinDaughter(0,EvtSpinType::SCALAR);
 checkSpinDaughter(1,EvtSpinType::SCALAR);
}

void EvtVSS::decay(EvtParticle *p){

 p->initializePhaseSpace(getNDaug(),getDaugs());

 EvtVector4R pdaug = p->getDaug(0)->getP4();

 double norm=1.0/pdaug.d3mag();
 vertex(0,norm*pdaug*(p->eps(0)));
 vertex(1,norm*pdaug*(p->eps(1)));
 vertex(2,norm*pdaug*(p->eps(2)));

 return;
}

void EvtVSS::init(){
 // check that there are 0 arguments
 checkNArg(0);

 // check that there are 2 daughters
 checkNDaug(2);

 // check the parent and daughter spins
 checkSpinParent(EvtSpinType::VECTOR);
 checkSpinDaughter(0,EvtSpinType::SCALAR);
 checkSpinDaughter(1,EvtSpinType::SCALAR);
}

void EvtVSS::decay(EvtParticle *p){

 p->initializePhaseSpace(getNDaug(),getDaugs());

 EvtVector4R pdaug = p->getDaug(0)->getP4();

 double norm=1.0/pdaug.d3mag();
 vertex(0,norm*pdaug*(p->eps(0)));
 vertex(1,norm*pdaug*(p->eps(1)));
 vertex(2,norm*pdaug*(p->eps(2)));

 return;
}

Anders Ryd 26Introduction to using EvtGen, March 2, 2004

Registering the model

The last step to do before you can use a model is to register
it with the EvtGen framework. This is done in the
EvtModelReg.cc:

modelist.Register(new EvtVSS);

For each instance of a decay in the decay table that uses the
VSS model
a new instance of the EvtVSS class is created using the
clone method.

Anders Ryd 27Introduction to using EvtGen, March 2, 2004

HELAMP and PARTWAVE models

• B->D2** D2**->D
– Known and nontrivial kinematical

distributions.

– For decays with multiple allowed
partial waves, amplitudes are
specified as model argument

B

D
2
**

D

A=d 00
2
=

1
2
3cos2

−1

Anders Ryd 28Introduction to using EvtGen, March 2, 2004

Given large data sample, detailed
effects must be modeled in

generic B Monte Carlo

Mixed up two decay
amplitudes in B->D* for
generic MC led to large data
vs MC differences for some
analyses.

Anders Ryd 29Introduction to using EvtGen, March 2, 2004

Jetset 7.4 used for inclusive
decay generation

We rely on Jetset to handle ee->qq fragmentation and B
decays not specified in the decay table.

B decays:

Approximately 40% of the B decay width is not
explicitly listed in decay table.

Pythia decays are accepted if generated mode is not
specified in the decay table.

We have performed some tuning to improve the data
vs. MC agreement

BF to charmless non-resonant states too big.

D* production in both B and ee->cc decays

Anders Ryd 30Introduction to using EvtGen, March 2, 2004

Lineshapes and Dalitz plots
Try to use relativistic Breit-Wigners for all particles with finite
width.

Only for decays to two daughters

• Otherwise non-rel BW.

Particles produced by Jetset have non-rel BW

Include where possible

phase space factors, birth and decay form factors.

Minimize use of mass cutoffs

Still needed in many cases to
prevent crashes due to
pathological configurations.

Moving towards integrated
 lineshape and Dalitz plot code.

D0->K+−0

Anders Ryd 31Introduction to using EvtGen, March 2, 2004

Monte Carlo production in BABAR
BABAR generates Monte Carlo to match reconstruction
code releases.

Production generators “frozen” for each cycle

– DECAY.DEC in particular.

– Bug fixes ok.

– Rarely, we include updates for new results. More often,
improved in next production cycle.

Given release cycle timescales, we must support multiple
release cycles until analysis are completed on data from
old releases..

Last production cycle has now produced 2.1B events.

Anders Ryd 32Introduction to using EvtGen, March 2, 2004

Users test and commit generator control files
to CVS for centralized MC generation

Large rate of special MC requests.

Anders Ryd 33Introduction to using EvtGen, March 2, 2004

Using EvtGen in suez

In releases newer than Dec10_03, using EvtGen is easy:

cleog gen EvtGenProd $env(NUMEVT) out $fileout run 200556
 -user_decay $env(UDECAY) -post {
 proc sel RunEventNumberProc
}

Where -user_decay <file> specifies a user file to overwrite the default
decay file as given in $C3_DATA/DECAY.DEC

Currently EvtGenProd creates an initial virtual photon (vpho) that is decayed
using jetset to a quark anti-quark pair:

Decay vpho
1.000 JSCONT 0;
Enddecay

Anders Ryd 34Introduction to using EvtGen, March 2, 2004

Writing a user decay file

#
Alias myD0 D0
Alias myanti-D0 anti-D0
#
Decay vpho
0.500 myD0 anti-D0 VSS;
0.500 D0 myanti-D0 VSS;
Enddecay
#
Decay myD0
1.000 eta pi0 PHSP;
Enddecay
#
Decay myanti-D0
1.000 eta pi0 PHSP;
Enddecay
#
End

Anders Ryd 35Introduction to using EvtGen, March 2, 2004

LundAreaLaw

Jim N. and I added the LundAreaLaw to EvtGen
The lund area law is a modified version of JetSet that should
produce a more accurate fragmentation at low energy, in particular it
should simulate baryon production better.

To use the lund area law for the fragmentation in e+e-:

Decay vpho
1.000 LUNDAREALAW 0;
Enddecay
End

Anders Ryd 36Introduction to using EvtGen, March 2, 2004

B->Xl lepton energy spectrum
• Lepton energy spectrum tuned

using CLEO data.

– PRL 76 1570 (1996)

0.9Dπl
0.3D*πl

0.37D2**(2460)l
0.37D1**’(2460)l

0.2D0**l
0.56D1**(2420)l

2.1Dl
5.6D*l

BF (%)Mode

Anders Ryd 37Introduction to using EvtGen, March 2, 2004

0 momentum spectrum

• PRD 64, 072001, (2001)

Points = Belle (stat+sys)
Histogram = EvtGen

Anders Ryd 38Introduction to using EvtGen, March 2, 2004

Inclusive resonance production in
B decays

22.817.6 +/- 1.6B->X

3.76.4 +/- 1.1B->cX
4.64.0 +/- 0.5B->X

4.73.5 +/- 0.7B->X

17.518 +/- 6B->K*+-X

1.041.090 +/- 0.035B->J/ψX

7.77.1+2.7-1.7B->D(*)D(*)K

25.726.0 +/- 2.7B->D*0X

26.222.5 +/- 1.5B->D*+-X

68.264.0 +/- 2.9B->D0X

32.424.5 +/- 2.1B->D+-X

10.610.7 +/- 0.28B->Xe
EvtGenPDG03

PDG B->D(*) production
Bfs not consistent with

isospin (and B(B->X)=1)
at several sigma level

Anders Ryd 39Introduction to using EvtGen, March 2, 2004

Preliminary (4S)->/K/p
spectra from BABAR

0.2240.155+-0.004p

1.611.54+-0.04K

7.987.73+-0.32
EvtGenBABAR

K

p

Anders Ryd 40Introduction to using EvtGen, March 2, 2004

Conclusion

EvtGen has been interfaced to the CLEO-c framework (suez).
EvtGen provides generic tools to solve a number of problems
in simulation of particle decays

Still some updates/improvements are needed for the CLEO-
c era.

Used by BABAR/Belle/CDF/LHC exp. for B-decays
Headache to maintain fixes from different places...

Modular framework
Makes it easy to add new physics models.

Much tuning has been done at the (4S), hope that we will
similarly improve the simulation at the 'lower' energies.

Anders Ryd 41Introduction to using EvtGen, March 2, 2004

Available decay modes (III)
• SSD_CP model simulates CP violation for final states with

a pseudoscalar + either a scalar,vector, or tensor.

– B->, B->J/ψKs, B->D*, etc.

– Specify in decay table:

• m

• /
• q/p

• A(B->f), A(Bbar->f,A(B->fbar),A(Bbar->fbar)

• z

– Flexible but relatively new model, so we are still gaining
experience with all the possible use cases.

Anders Ryd 42Introduction to using EvtGen, March 2, 2004

B
s
 physics in EvtGen

Items different wrt Υ(4S)BB decays:
• Large # of common final states
• Incoherent mixing

Conclude about common final states

Anders Ryd 43Introduction to using EvtGen, March 2, 2004

Basic EvtGen interface (EvtGen.cc)

EvtGen myGenerator(

<DECAY.DEC location>,

<evt.pdl location>

<randomNumberEngine>.

<FSR generator>);

myGenerator.readUDecay(<user decay file>);

EvtParticle *myParentParticle;

….. (Set up parent particle properties)….

myGenerator.generateEvent(myParentParticle,t_init);

Optional: PHOTOS
is default.

