The CLEO-c Experiment and its Impact

Anders Ryd
Cornell University
Ithaca, Oct. 24, 2006

Outline:
• The CLEO-c Physics Program
• Tests of Lattice QCD
• Some Recent CLEO-c Results:
 • Hadronic D Decays
 • Leptonic D and D_s Decays
 • Semileptonic D Decays
• Conclusions
Heavy Quark Physics

- Many experiments study decays of b-quarks:
 - B-factories: BABAR and Belle
 - Tevatron: CDF and D0
 - LHC: LHCb
- The CLEO-c experiment is making unique contributions to these studies

Leptonic decays

$D^+ \left\{ \begin{array}{cc} c & \bar{d} \\ \end{array} \right\} \rightarrow W^+ \ell^+ \nu$

Decay constant, f_D, describes overlap of c and d quark in the D^+.

Semileptonic decays

$D^0 \left\{ \begin{array}{cc} c \bar{u} \bar{d} & \bar{u} \\ d & \bar{u} \\ \end{array} \right\} \rightarrow \pi^+ \nu$

Form factors describe prob. to form final state: $f(p) = <\pi|H|D>$

QCD (Quantum ChromoDynamics) is a strongly interacting theory

CLEO-c will allow crucial tests of Lattice QCD
Lattice QCD

- At low energy QCD is strongly coupled
 - Calculations done on discrete lattice
 - Recent revolutionary progress in algorithms have allowed simulation of full QCD.
 - Can handle QCD vacuum polarization
 - Understanding strongly coupled systems is important.
 - LHC might uncover new strongly interacting physics.

This dramatic improvement in Lattice QCD needs to be validated in calculations of form factors and decay constants.

Before 2000

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Coupling Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>100</td>
<td>0.1</td>
</tr>
</tbody>
</table>

HPQCD+FERMILAB+MILC
PRL 92:022001,2004

~2004

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Coupling Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>1.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

LQCD/Exp’t ($n_f = 0$) LQCD/Exp’t ($n_f = 3$)
CLEO-c detector is working very well. The detector capabilities are well matched to the physics.

- **New inner drift chamber**
- **Tracking in 1.0 T field**
 - $\sigma_p/p \approx 0.6\%$ at 1 GeV
- **Excellent E-M calorimeter**
 - $\sigma_E/E \approx 2\%$ at 1 GeV
- **Hadron PID from RICH**
 - Very good below 1 GeV
Absolute D Branching Fractions

$D^+ \rightarrow K^- \pi^+ \pi^+$ Branching Fraction

Tag D – fully reconstructed

Unique to CLEO-c:
Running near $c\bar{c}$ threshold

Data (281 fb$^{-1}$)

~80,000 $D \rightarrow K\pi\pi$

Very little background

e^+ $\rightarrow \pi^- K^+$ $\rightarrow \pi^- \pi^-$ $\rightarrow D^-$ $\rightarrow K^- \pi^- \pi^+$

e^- $\rightarrow \pi^+ K^+$ $\rightarrow \pi^+ \pi^+$ $\rightarrow D^+$ $\rightarrow K^+ \pi^+ \pi^+$
$D^+ \rightarrow \mu^+ \nu_\mu$ and f_{D^+}

First significant measurement of $D^+ \rightarrow \mu^+ \nu_\mu$

$Br(D^+ \rightarrow \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$

$f_{D^+} = (222.6 \pm 16.7^{+2.8}_{-3.4})$ MeV

PRL 95, 251801 (2005)
Data vs. Lattice Calculations

- Similar technique used also to measure f_{D_S} in $D_S \rightarrow \mu \nu$.
- CLEO results consistent with most (recent) predictions.
- For precision comparisons we need the complete CLEO-c program.
 - Will allow tests at the 2-4% level.
An important goal of the CLEO-c program is to measure form factors to check lattice QCD calculations.

\[
D^0 \rightarrow \pi^{-} e^{+} \nu,
\]

\[
D^0 \rightarrow K e^{-} \nu,
\]

The \(c\bar{c} \) threshold operation of CLEO-c makes it unique.
Exclusive Signals (281 pb$^{-1}$)

$U = E_{\text{miss}} - |P_{\text{miss}}|$ (GeV)

$D^0\rightarrow \pi^+ e^+\nu$

699 ± 28

$D^0\rightarrow K^+ e^+\nu$

6796 ± 84

$D^+\rightarrow \pi^0 e^+\nu$

295 ± 20

$D^+\rightarrow K^0 e^+\nu$

2910 ± 55

B($D^0\rightarrow \pi^- e^+\nu$) x 10$^{-3}$

PDG (2004)

BES II

LQCD

CLEO–c (tag, 56 pb$^{-1}$)

Belle (tag, 282 fb$^{-1}$)

CLEO–c (tag, 281 pb$^{-1}$)

CLEO–c (no tag, 281 pb$^{-1}$)
CLEO-c measurements of semileptonic D decays world's best.
Conclusion

• CLEO-c are producing unique results on charm decays
 · Very well understood detector and software
 · Small but dedicated and focused group
• For D decays we are rewriting the books
 · Absolute branching fractions for D and D_s decays
 · Leptonic D and D_s decays
 · Semileptonic D and D_s decays
• These measurements allow precise tests of Lattice calculations.
 · Important to interpret B-physics data from the B-factories and the Tevatron.
• Many other important topics not discussed here, e.g., Dalitz studies for γ measurements, strong phase in D decays etc.
Backup Slides
Physics Motivation

- The CLEO-c program impacts many of the CKM parameters
- In particular, leptonic D and D_s decays allow measurements of the decay constants
- This will help the determination of V_{td}
- Semileptonic D decays will check form factor calculations and improve V_{ub}
- Hadronic D decays are important for normalization of B decays

Determining the CKM Matrix

CLEO-c will directly measure D-decays
CLEO-c will measure D-decays constants

CLEO-c measurements of D-decays will have a significant impact on the determination of 6 of the CKM matrix elements.
- Directly by studying $D \rightarrow \pi e$ and $D \rightarrow K e$.
- Or indirectly be measuring quantities that can be used to validated calculations of the strong dynamics that binds the quarks to hadrons.

Form factors from D-decays and Lattice QCD and precision br. fr. From D decays will help improve
Testing Theories of Strong Interactions

- Measure form factors in $D \rightarrow \pi l\nu$ and validate theoretical calculations
 - Can then use this to extract $|V_{ub}|$ from $B \rightarrow \pi l\nu$

- B mixing is well measured
 - $\Delta m_d = (0.502 \pm 0.007) \times 10^{-12}$ s
 - But $|V_{td}|$ from Δm_d has large uncertainties from f_B
 - CLEO-c can measure f_D

\[\Delta m_d = \frac{G_F^2}{6} M_B M_t^2 |V_{td} V_{tb}^*|^2 \eta_B S_0 (x_t) f_B^2 B_B \]
CLEO Collaboration

About 135 collaborators

- New groups are still joining CLEO-c