Electron Seeding with Silicon Strips

Jean Duboscq Avi Chatterjee Walter Hopkins Deb Mohapatra Chris Macklin Ritchie Patterson

Cornell University

Motivation

- Increase efficiency of electron seeding, especially at large η.
 Complements pixel based matching.
- Provide redundancy Having both Pixel and SiStrip seeding could be valuable, especially in early days of running when the devices are still being understood.

Hit preselection: $r-\phi$

Aside on showers and roads

Case:

- **100 GeV electrons**, η **= 0.75**
- 2 basic clusters in SC, presumably 1 electron, 1 radiated photon
- |Δφ| is narrow when the energy sharing is asymmetric.
- |Δφ| can be large when the energy sharing is more balanced.

Does this reflect difficulty in determining the SC position when the basic clusters overlap?

• Led to widening the cut to $|\Delta \phi| > 0.1$

Hit preselection: r-z

- Road width is driven by beam luminous region
- z_{miss} = z at beam axis of line through SC and hit.
- |z_{miss}| < 15 cm

originZ for TEC 1 Wheel 1

 $\mathbf{Z}_{\mathsf{miss}}$

February 26, 2008 7

Step 2: Form seeds

r- ϕ view

r-z view

Reality checks

February 26, 2008 9

More reality checks

10,000 electron gun events E = 25 GeV $0 < \eta < 2.5$

Seeding Efficiency

- Electron gun events
 - E_{sc} > 15 GeV
 - L1 energy > 15 GeV
 - "found" = seed with $\Delta R > 0.05$ and $\Delta Q=0$

February 26, 2008 13

Track efficiency

Efficiency = Fraction of good SC with at least one track found (includes seeding efficiency)

Track efficiency

Efficiency = Fraction of good SC with at least one track found

Conclusions

- Silicon strip seeding achieves efficiencies of 88% (25 GeV) to 96% (100 GeV) at large η.
- Looks encouraging (at least to me), BUT, there are things that need to be studied that could reduce this:
 - Fake rates may require tightening cuts
 - Timing may require tightening cuts
 - Multiple seed rejection may throw out some good seeds with the bad

Backup Slides

Endcap seed $\Delta \mathbf{R}$

