Fast Luminosity Monitor Electronic Logbook 2006
13 Jul 2024  00:21
January 2006
January 3, 2006 (J. Dobbins, C. Strohman, M. Palmer, E. Tanke): New FLMA with accumulator board installed in CESR
 The new FLMA with accumulator board has been installed in CESR.
 Note that the problem with the channel mapping (see 31Dec2005) has been fixed.
February 2006
February 14, 2006 (C. Strohman): FLMA now has ethernet card
 A ColdFire ethernet module was installed in the FLMA box: CBI_CF02, address 192.168.1.146
 Added a dual Xbus/RS232 cable (the RS232 side is currently not connected)
February 21, 2006 (C. Strohman): Two more accumulator boards installed in the FLMA module
Accumulator boards were installed on the two horizontal ADC boards (Analog Card #1 and #2). Please refer to the programming manual for the addresses used to access these additional cards. Each card has a pair of jumpers that set the BOARD_ID. The jumpers are set to correspond to the analog card numbers. If a board needs to be replaced, be sure to install one that has the jumpers set properly. There are 3 spare boards in Charlie's office; one for each of the 3 BOARD_IDs. The boards are clearly labeled.
Unlike the original accumulator board on the vertical channel, these two new accumulator boards are only intended for "Geo Global Rate Data" and "Geo Channel Rate Data". Don't try to use the lookup table for "Bunch Rate Data", "Fast Global Rate Data", nor "Slow Global Rate Data". The lookup table will not use "ADC 0" nor "ADC 7". A major restructuring of the Xilinx code is required before the lookup table can be used.
The front panel 8pin miniDIN connector used to program the Xilinx chip on the accumulator boards is
NOT connected internally. If a Xilinx code change is required, the box must be opened and the cable must be connected to the appropriate accumulator board. It might be possible to daisychain the configuration EEPROMs, but that will be left for a future project.
 The measured power used by the FLMA module (3 ADC boards and 3 accumulator boards) when it is not doing anything useful:
 0.90 amps @ 2 volts (1.8 watts)
 7.5 amps @ 4 volts (30 watts)
 0.8 amps @ 5.5 volts (4.4 watts)
 0.32 amps @ 12 volts (3.8 watts)
 0.70 amps @ 5 volts (3.5 watts)
 Total = 43.5 watts
 The ColdFire ethernet module that was previously installed in the FLMA box has been taken out and reinstalled in the BSM23E box
March 2006
March 16, 2006 (E. Tanke, M. Palmer): FLM Calibration Checks
 MS Plan
 Run MCA digital analysis to verify channelbychannel gains/HV settings
 Analog readout pedestal calibration
 Take a full load of e+ to HEP conditions to check gas bremsstrahlung background
 Optimizer checkout using FLM accumulator signals
 Install new database node(s) for raw FLM accumulator data if time permits (otherwise Tuesday)
 MCA data taken with FLM_V1 (24 channels), Tglob=1400, bunch selection file=mca_bunches.dat, 250 bins, data stored in subdirectories of tanke/cesr/ts101/flm03w/test_24c_mca/2006_03_16 :
 /0804 500 loops, MCAMIN=20000, MCAMAX=1000 (data taking took ~22 minutes)
 /0835 100 loops, MCAMIN=41000, MCAMAX=1000
March 29, 2006 (E. Tanke): Units for the FLM ACC nodes
 The data in the FLM ACCx CHy nodes correspond to individual bunch rates (in Hz) for individual channels, whereby:
 x=0 => vertical accumulator board
 x=1 => first horizontal accumulator board
 x=2 => second horizontal accumulator board
 y=0..7 => channel number (NOT geometric)
 The size of these nodes is 183
 The bunch rates are in order of accumulator board bunch number
 The units in the FLM ACC HORZ and FLM ACC VERT nodes are now Hz and Hz/mA. Note that "fff getall" will give format errors for numbers equal to or larger than 1000000.
 FLM ACC HORZ 116 reflect the channel by channel rates, in Hz. They are NOT in geometrical order
1 HORZ RATE CH 0 0= 0.000 Cunits @ 0 Out= 0 @ 0 NOT USED
2 HORZ RATE CH 1 29058= 29058.000 Cunits @ 0 Out= 29058 @ 0 H GEO 12
3 HORZ RATE CH 2 273321= 273321.000 Cunits @ 0 Out= 273321 @ 0 H GEO 8
4 HORZ RATE CH 3 401665= 401665.000 Cunits @ 0 Out= 401665 @ 0 H GEO 4
5 HORZ RATE CH 4 15134= 15134.000 Cunits @ 0 Out= 15134 @ 0 H GEO 14
6 HORZ RATE CH 5 66117= 66117.000 Cunits @ 0 Out= 66117 @ 0 H GEO 10
7 HORZ RATE CH 6 890008= 890008.000 Cunits @ 0 Out= 890008 @ 0 H GEO 6
8 HORZ RATE CH 7 60234= 60234.000 Cunits @ 0 Out= 60234 @ 0 H GEO 2
9 HORZ RATE CH 8 141793= 141793.000 Cunits @ 0 Out= 141793 @ 0 H GEO 3
10 HORZ RATE CH 9 589955= 589955.000 Cunits @ 0 Out= 589955 @ 0 H GEO 7
11 HORZ RATE CH 10 39221= 39221.000 Cunits @ 0 Out= 39221 @ 0 H GEO 11
12 HORZ RATE CH 11 0= 0.000 Cunits @ 0 Out= 0 @ 0 NOT USED
13 HORZ RATE CH 12 30599= 30599.000 Cunits @ 0 Out= 30599 @ 0 H GEO 1
14 HORZ RATE CH 13 761355= 761355.000 Cunits @ 0 Out= 761355 @ 0 H GEO 5
15 HORZ RATE CH 14 116792= 116792.000 Cunits @ 0 Out= 116792 @ 0 H GEO 9
16 HORZ RATE CH 15 18563= 18563.000 Cunits @ 0 Out= 18563 @ 0 H GEO 13
 FLM ACC HORZ 1730 are spares
 FLM ACC VERT 145 reflect bunch rates in Hz
1 VERT RATE BUN 1 0= 0.000 Cunits @ 0 Out= 0 @ 0 T1B1
2 VERT RATE BUN 2 0= 0.000 Cunits @ 0 Out= 0 @ 0 T1B2
3 VERT RATE BUN 3 103504= 103504.000 Cunits @ 0 Out= 103504 @ 0 T1B3
4 VERT RATE BUN 4 107558= 107558.000 Cunits @ 0 Out= 107558 @ 0 T1B4
5 VERT RATE BUN 5 51701= 51701.000 Cunits @ 0 Out= 51701 @ 0 T1B5
6 VERT RATE BUN 6 0= 0.000 Cunits @ 0 Out= 0 @ 0 T2B1
7 VERT RATE BUN 7 0= 0.000 Cunits @ 0 Out= 0 @ 0 T2B2
8 VERT RATE BUN 8 111791= 111791.000 Cunits @ 0 Out= 111791 @ 0 T2B3
9 VERT RATE BUN 9 110277= 110277.000 Cunits @ 0 Out= 110277 @ 0 T2B4
10 VERT RATE BUN 10 102065= 102065.000 Cunits @ 0 Out= 102065 @ 0 T2B5
11 VERT RATE BUN 11 0= 0.000 Cunits @ 0 Out= 0 @ 0 T3B1
12 VERT RATE BUN 12 0= 0.000 Cunits @ 0 Out= 0 @ 0 T3B2
13 VERT RATE BUN 13 107745= 107745.000 Cunits @ 0 Out= 107745 @ 0 T3B3
14 VERT RATE BUN 14 109848= 109848.000 Cunits @ 0 Out= 109848 @ 0 T3B4
15 VERT RATE BUN 15 114038= 114038.000 Cunits @ 0 Out= 114038 @ 0 T3B5
16 VERT RATE BUN 16 0= 0.000 Cunits @ 0 Out= 0 @ 0 T4B1
17 VERT RATE BUN 17 0= 0.000 Cunits @ 0 Out= 0 @ 0 T4B2
18 VERT RATE BUN 18 107125= 107125.000 Cunits @ 0 Out= 107125 @ 0 T4B3
19 VERT RATE BUN 19 104569= 104569.000 Cunits @ 0 Out= 104569 @ 0 T4B4
20 VERT RATE BUN 20 89303= 89303.000 Cunits @ 0 Out= 89303 @ 0 T4B5
21 VERT RATE BUN 21 0= 0.000 Cunits @ 0 Out= 0 @ 0 T5B1
22 VERT RATE BUN 22 0= 0.000 Cunits @ 0 Out= 0 @ 0 T5B2
23 VERT RATE BUN 23 102654= 102654.000 Cunits @ 0 Out= 102654 @ 0 T5B3
24 VERT RATE BUN 24 105135= 105135.000 Cunits @ 0 Out= 105135 @ 0 T5B4
25 VERT RATE BUN 25 105291= 105291.000 Cunits @ 0 Out= 105291 @ 0 T5B5
26 VERT RATE BUN 26 0= 0.000 Cunits @ 0 Out= 0 @ 0 T6B1
27 VERT RATE BUN 27 0= 0.000 Cunits @ 0 Out= 0 @ 0 T6B2
28 VERT RATE BUN 28 107858= 107858.000 Cunits @ 0 Out= 107858 @ 0 T6B3
29 VERT RATE BUN 29 108713= 108713.000 Cunits @ 0 Out= 108713 @ 0 T6B4
30 VERT RATE BUN 30 102857= 102857.000 Cunits @ 0 Out= 102857 @ 0 T7B5
31 VERT RATE BUN 31 0= 0.000 Cunits @ 0 Out= 0 @ 0 T7B1
32 VERT RATE BUN 32 0= 0.000 Cunits @ 0 Out= 0 @ 0 T7B2
33 VERT RATE BUN 33 101210= 101210.000 Cunits @ 0 Out= 101210 @ 0 T7B3
34 VERT RATE BUN 34 107886= 107886.000 Cunits @ 0 Out= 107886 @ 0 T7B4
35 VERT RATE BUN 35 89526= 89526.000 Cunits @ 0 Out= 89526 @ 0 T7B5
36 VERT RATE BUN 36 0= 0.000 Cunits @ 0 Out= 0 @ 0 T8B1
37 VERT RATE BUN 37 0= 0.000 Cunits @ 0 Out= 0 @ 0 T8B2
38 VERT RATE BUN 38 104148= 104148.000 Cunits @ 0 Out= 104148 @ 0 T8B3
39 VERT RATE BUN 39 110457= 110457.000 Cunits @ 0 Out= 110457 @ 0 T8B4
40 VERT RATE BUN 40 102802= 102802.000 Cunits @ 0 Out= 102802 @ 0 T8B5
41 VERT RATE BUN 41 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B1
42 VERT RATE BUN 42 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B2
43 VERT RATE BUN 43 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B3
44 VERT RATE BUN 44 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B4
45 VERT RATE BUN 45 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B5
 FLM ACC VERT 46 reflects the fast global rate in Hz
46 VERT FAST ALLBUN 2452020= ********** Cunits @ 0 Out=2452020 @ 0
 FLM ACC VERT 47 reflects the slow global rate in Hz
47 VERT SLOW ALLBUN 2460626= ********** Cunits @ 0 Out=2460626 @ 0
 FLM ACC VERT 4855 reflect the channel by channel rates, in Hz. They are NOT in geometrical order
48 VERT RATE CHAN 0 0= 0.000 Cunits @ 0 Out= 0 @ 0 NOT USED
49 VERT RATE CHAN 1 665065= 665065.000 Cunits @ 0 Out= 665065 @ 0 V GEO 5
50 VERT RATE CHAN 2 592097= 592097.000 Cunits @ 0 Out= 592097 @ 0 V GEO 3
51 VERT RATE CHAN 3 48292= 48292.000 Cunits @ 0 Out= 48292 @ 0 V GEO 1
52 VERT RATE CHAN 4 153903= 153903.000 Cunits @ 0 Out= 153903 @ 0 V GEO 6
53 VERT RATE CHAN 5 1397811= ********** Cunits @ 0 Out=1397811 @ 0 V GEO 4
54 VERT RATE CHAN 6 162408= 162408.000 Cunits @ 0 Out= 162408 @ 0 V GEO 2
55 VERT RATE CHAN 7 0= 0.000 Cunits @ 0 Out= 0 @ 0 NOT USED
 FLM ACC VERT 5660 are spares
 FLM ACC VERT 61105 reflect bunch specific rates in Hz/mA
61 VERT LOI BUN 1 0= 0.000 Cunits @ 0 Out= 0 @ 0 T1B1
62 VERT LOI BUN 2 0= 0.000 Cunits @ 0 Out= 0 @ 0 T1B2
63 VERT LOI BUN 3 45370= 45370.000 Cunits @ 0 Out= 45370 @ 0 T1B3
64 VERT LOI BUN 4 45903= 45903.000 Cunits @ 0 Out= 45903 @ 0 T1B4
65 VERT LOI BUN 5 33110= 33110.000 Cunits @ 0 Out= 33110 @ 0 T1B5
66 VERT LOI BUN 6 0= 0.000 Cunits @ 0 Out= 0 @ 0 T2B1
67 VERT LOI BUN 7 0= 0.000 Cunits @ 0 Out= 0 @ 0 T2B2
68 VERT LOI BUN 8 46497= 46497.000 Cunits @ 0 Out= 46497 @ 0 T2B3
69 VERT LOI BUN 9 47225= 47225.000 Cunits @ 0 Out= 47225 @ 0 T2B4
70 VERT LOI BUN 10 45042= 45042.000 Cunits @ 0 Out= 45042 @ 0 T2B5
71 VERT LOI BUN 11 0= 0.000 Cunits @ 0 Out= 0 @ 0 T3B1
72 VERT LOI BUN 12 0= 0.000 Cunits @ 0 Out= 0 @ 0 T3B2
73 VERT LOI BUN 13 44401= 44401.000 Cunits @ 0 Out= 44401 @ 0 T3B3
74 VERT LOI BUN 14 46533= 46533.000 Cunits @ 0 Out= 46533 @ 0 T3B4
75 VERT LOI BUN 15 47201= 47201.000 Cunits @ 0 Out= 47201 @ 0 T3B5
76 VERT LOI BUN 16 0= 0.000 Cunits @ 0 Out= 0 @ 0 T4B1
77 VERT LOI BUN 17 0= 0.000 Cunits @ 0 Out= 0 @ 0 T4B2
78 VERT LOI BUN 18 45612= 45612.000 Cunits @ 0 Out= 45612 @ 0 T4B3
79 VERT LOI BUN 19 46447= 46447.000 Cunits @ 0 Out= 46447 @ 0 T4B4
80 VERT LOI BUN 20 42036= 42036.000 Cunits @ 0 Out= 42036 @ 0 T4B5
81 VERT LOI BUN 21 0= 0.000 Cunits @ 0 Out= 0 @ 0 T5B1
82 VERT LOI BUN 22 0= 0.000 Cunits @ 0 Out= 0 @ 0 T5B2
83 VERT LOI BUN 23 44585= 44585.000 Cunits @ 0 Out= 44585 @ 0 T5B3
84 VERT LOI BUN 24 44911= 44911.000 Cunits @ 0 Out= 44911 @ 0 T5B4
85 VERT LOI BUN 25 44401= 44401.000 Cunits @ 0 Out= 44401 @ 0 T5B5
86 VERT LOI BUN 26 0= 0.000 Cunits @ 0 Out= 0 @ 0 T6B1
87 VERT LOI BUN 27 0= 0.000 Cunits @ 0 Out= 0 @ 0 T6B2
88 VERT LOI BUN 28 44946= 44946.000 Cunits @ 0 Out= 44946 @ 0 T6B3
89 VERT LOI BUN 29 46281= 46281.000 Cunits @ 0 Out= 46281 @ 0 T6B4
90 VERT LOI BUN 30 44312= 44312.000 Cunits @ 0 Out= 44312 @ 0 T6B5
91 VERT LOI BUN 31 0= 0.000 Cunits @ 0 Out= 0 @ 0 T7B1
92 VERT LOI BUN 32 0= 0.000 Cunits @ 0 Out= 0 @ 0 T7B2
93 VERT LOI BUN 33 42609= 42609.000 Cunits @ 0 Out= 42609 @ 0 T7B3
94 VERT LOI BUN 34 45531= 45531.000 Cunits @ 0 Out= 45531 @ 0 T7B4
95 VERT LOI BUN 35 41730= 41730.000 Cunits @ 0 Out= 41730 @ 0 T7B5
96 VERT LOI BUN 36 0= 0.000 Cunits @ 0 Out= 0 @ 0 T8B1
97 VERT LOI BUN 37 0= 0.000 Cunits @ 0 Out= 0 @ 0 T8B2
98 VERT LOI BUN 38 43267= 43267.000 Cunits @ 0 Out= 43267 @ 0 T8B3
99 VERT LOI BUN 39 46630= 46630.000 Cunits @ 0 Out= 46630 @ 0 T8B4
100 VERT LOI BUN 40 45728= 45728.000 Cunits @ 0 Out= 45728 @ 0 T8B5
101 VERT LOI BUN 41 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B1
102 VERT LOI BUN 42 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B2
103 VERT LOI BUN 43 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B3
104 VERT LOI BUN 44 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B4
105 VERT LOI BUN 45 0= 0.000 Cunits @ 0 Out= 0 @ 0 T9B5
 FLM ACC VERT 106 reflects the fast global specific rate in Hz/mA
106 VERT LOI FAST 44423= 44423.000 Cunits @ 0 Out= 44423 @ 0
 FLM ACC VERT 107 reflects the slow global specific rate in Hz/mA
107 VERT LOI SLOW 44579= 44579.000 Cunits @ 0 Out= 44579 @ 0
 FLM ACC VERT 108120 are spares
June 2006
June 15, 2006 (E.Tanke): FLM Installed at 3W in view of the upcoming CLEO run
 The FLM has been installed at 3W in view of the upcoming CLEO run; see the CESR Elog page
July 2006
July 05, 2006 (E.Tanke): FLM Up and running
 Following the 15Jun2006 installation, the FLM was taken out again because CESR had to be run at high energy to rinse the machine following a vacuum intervention. Today the FLM was reinstalled and tested.
 A timing scan was made on the vertical channels; the optimal timing was found to be around 1400. The FLM now operates with this timing.
July 12, 2006 (M.Palmer, E.Tanke): FLM MCA data taken
 MCA data taken with FLM_V1 (24 channels), Tglob=1400, bunch selection 9x3, 250 bins, data stored in tanke/cesr/ts101/flm03w/test_24c_mca/2006_07_12/0810 :
 500 loops, MCAMIN=20000, MCAMAX=1000
 Subsequently also new analog pedestals were taken.
July 19, 2006 (E. Tanke): Units for the FLM BUN VERT node
 Bunch data in the FLM BUN VERT node are organized for 9x5 bunches and have the following units:
1 VERT BUN RAW 1 78879 = 0.7888E+05 Cunits T1B1 raw rate (Hz), identical to FLM ACC VERT 1
2 VERT SIGMA 1 9901 = 0.9901E+04 Cunits T1B1 fitted sigma (microns)
3 VERT MEAN 1 308 = 0.3080E+03 Cunits T1B1 fitted mean (microns)
4 VERT RATE 1 102809 = 0.1028E+06 Cunits T1B1 fitted rate (Hz)
5 VERT LOI RAW 1 39908 = 0.3991E+05 Cunits T1B1 raw LOI (Hz/mA), identical to FLM ACC VERT 61
6 VERT LOI FIT 1 52015 = 0.5202E+05 Cunits T1B1 fitted LOI (Hz/mA)
7 VERT BUN RAW 2 80997 = 0.8100E+05 Cunits T1B2 raw rate (Hz), identical to FLM ACC VERT 2
8 VERT SIGMA 2 9745 = 0.9745E+04 Cunits T1B2 fitted sigma (microns)
9 VERT MEAN 2 198 = 0.1980E+03 Cunits T1B2 fitted mean (microns)
10 VERT RATE 2 105010 = 0.1050E+06 Cunits T1B2 fitted rate (Hz)
11 VERT LOI RAW 2 39666 = 0.3967E+05 Cunits T1B2 raw LOI (Hz/mA), identical to FLM ACC VERT 62
12 VERT LOI FIT 2 51426 = 0.5143E+05 Cunits T1B2 fitted LOI (Hz/mA)
 Sequences of these sets of six values repeat for the remaining bunches, whereby the starting points are:
T2B1 = element # 31
T3B1 = element # 61
T4B1 = element # 91
T5B1 = element # 121
T6B1 = element # 151
T7B1 = element # 181
T8B1 = element # 211
T9B1 = element # 241
 Data pertaining to the entire beam can be found in the following elements:
271 VERT ALL RAW 1961434 = 0.1961E+07 Cunits Total rate (Hz)
272 VERT ALL SIGMA 10147 = 0.1015E+05 Cunits Fitted sigma (microns)
273 VERT ALL MEAN 165 = 0.1650E+03 Cunits Fitted mean (microns)
274 VERT ALL RATE 2551482 = 0.2551E+07 Cunits Total fitted total rate (Hz)
275 VERT ALL LOI RAW 39243 = 0.3924E+05 Cunits Total LOI (Hz/mA)
276 VERT ALL LOI FIT 51062 = 0.5106E+05 Cunits Fitted total LOI (Hz/mA)
277 VERT ALL LOI^2 R 785 = 0.7850E+03 Cunits Total LOI^2 (Hz/(mA*mA))
278 VERT ALL LOI^2 F 1022 = 0.1022E+04 Cunits Total Fitted LOI^2 (Hz/(mA*mA))

 Average over all bunches:
279 VERT AVG RAW 81726 = 0.8173E+05 Cunits Average rate (Hz)
280 VERT AVG SIGMA 10083 = 0.1008E+05 Cunits Average fitted sigma (microns)
281 VERT AVG MEAN 71 = 0.7100E+02 Cunits Average fitted mean (microns)
282 VERT AVG RATE 106311 = 0.1063E+06 Cunits Average fitted rate (Hz)
283 VERT AVG LOI RAW 39408 = 0.3941E+05 Cunits Average LOI (Hz/mA)
284 VERT AVG LOI FIT 51276 = 0.5128E+05 Cunits Average fitted LOI (Hz/mA)
285 VERT AVG LOI^2 R 19025 = 0.1903E+05 Cunits Average LOI^2 (Hz/(mA*mA))
286 VERT AVG LOI^2 F 24762 = 0.2476E+05 Cunits Average LOI^2 (Hz/(mA*mA))

 Total number of good bunches
287 VERT N GOOD BUN 24 = 0.2400E+02 Cunits

 Rates per channel (in geometric order):
288 VERT RATE GEO 1 639 = 0.6390E+03 Cunits (Hz)
289 VERT RATE GEO 2 2634 = 0.2634E+04 Cunits (Hz)
290 VERT RATE GEO 3 8742 = 0.8742E+04 Cunits (Hz)
291 VERT RATE GEO 4 8597 = 0.8597E+04 Cunits (Hz)
292 VERT RATE GEO 5 2481 = 0.2481E+04 Cunits (Hz)
293 VERT RATE GEO 6 682 = 0.6820E+03 Cunits (Hz)
July 28, 2006 (E.Tanke): FLM MCA data taken
 MCA data taken with FLM_V2 (24 channels), Tglob=1400, 250 bins, data stored in tanke/cesr/ts101/flm03w/test_24c_mca/2006_07_28/ :
 500 loops, MCAMIN=20000, MCAMAX=1000
September 2006
September 11, 2006 (E.Tanke): FLM MCA data taken
 MCA data taken with FLM_V2 (24 channels), Tglob=1400, 250 bins, data stored in tanke/cesr/ts101/flm03w/test_24c_mca/2006_09_11/ :
 500 loops, MCAMIN=20000, MCAMAX=1000
September 17, 2006 (M.Palmer): FLM Calibration
Installed a new set of FLM high voltage values (version 7) based on last week's calibration data (taken 9/11). As expected, this has resulted in a shift in the analog output values but only slight adjustments to the digital (thresholdbased) readout. For this calibration, the operating voltages for all channels had to be raised to maintain the target pulseheight for minimum ionizing particles. This suggests that we are now seeing the effects of radiation damage to the detector.
September 18, 2006 (E.Tanke): FLM MCA data taken
 MCA data taken with FLM_V2 (24 channels), Tglob=1400, 250 bins, data stored in tanke/cesr/ts101/flm03w/test_24c_mca/2006_09_18/ :
 in subdirectory /0710: 100 loops, MCAMIN=20000, MCAMAX=1000
 in subdirectory /0740: 500 loops, MCAMIN=20000, MCAMAX=1000
 FLM has been taken out in view of upcoming CHESS run (Melissa Cole, EPT)
November 2006
November 19, 2006 (E.Tanke): FLM reinstalled in view of CLEO run
 FLM has been reinstalled in view of upcoming CLEO run (Melissa Cole, EPT)