CLASSE Safety Handbook

Blacklock.png On-site or login
You are here: CLASSE Wiki>Safety/Handbook Web>RadiationSafety (25 Apr 2023, RigelLochner)Edit Attach
Tags

Radiation Safety

Quick links to forms:
  • To request a permanent badge, fill out this online form.
  • To report a badge mishap, fill out this online form.
  • If you have a NetId, get your radiation dose report by clicking this link.
  • If you do not have a NetId, get your dose report by filling out this form.

Radiation Overview

Research conducted at CLASSE involves radiation-producing equipment (RPE) and radioactive sources, so it is incumbent upon every student, employee, and researcher to understand how to avoid radiation hazards. Signs and alarms provide warning at hazardous locations, and interlock systems prevent close proximity to equipment actively producing ionizing radiation. Further protection is afforded by shielding material surrounding such equipment. Anyone who works in controlled areas wears a radiation badge, which can later be used to confirm lack of radiation exposure. The few who work occasionally in the vicinity of residual radioactivity or with radioactive sources should, while doing so, wear protective goggles and gloves as well as ring badges if appropriate. Further detailed information on radiation safety appears in the balance of this chapter; questions should be directed to the CLASSE Safety Director.

Radiation is usually classified as either ionizing or non-ionizing. Ionizing radiation is energetic enough to remove electrons from atoms and disrupt molecules in living organisms. Some examples of ionizing radiation are x-ray, beta, gamma, and neutron radiation; these can be produced by radiation-producing equipment (RPE) or by inherently radioactive material (radioisotopes). Non-ionizing radiation includes visible light, radar, microwave, infrared, radio and television signals, and electric power fields (including magnetic fields), for which health effects are considerably more subtle. Most of the radiation hazard at CLASSE is from ionizing radiation, but care must also be taken near magnetic fields.

It is beyond the scope of this Handbook to detail the physiological effects of ionizing radiation. On the one hand, we all receive low levels of radiation exposure from natural sources and medical imaging. On the other hand, it is well-documented that very high levels of radiation exposure can cause genetic damage, illness, and death. Health effects from doses significantly higher than natural background but smaller than from documented cases of high exposures have been difficult to prove. Increased doses are thought to correlate with increased incidence of cancers, but no threshold or clear relationship has been definitively shown to exist in this intermediate range of exposure. Ionizing radiation is invisible, and there are no immediate symptoms from even dangerous levels of exposure. It can take years or decades for cancers to develop from high doses. Hence the custom in radiation safety is to err on the safe side by using a variety of means to restrict human exposure levels considerably below known hazardous levels, and to measure and document this lack of exposure for physical spaces and all personnel who work near RPE and/or radioactive sources.

DoseTable.jpgAmericans receive an average annual dose of 620 mrem/yr, half of which is from natural background sources (approximately 300 mrem/yr, or just under 1 mrem/day) and half of which from medical imaging (up to hundreds of mrem per scan, depending on the type). Natural backgrounds are dominated by exposure to radon gas, but also include cosmic rays from extra-terrestrial sources and radioactivity in the soil, our bodies, and our foods.

Exposure to ionizing radiation is controlled at CLASSE by the following means:
  • Signage warns of areas of potential radiation exposure; sometimes areas are roped off temporarily
  • Shielding generally separates you from active radiation sources; shielding can take the form of tunnel walls and the earth surrounding them, the large concrete blocks such as found in L0, lead bricks or portions thereof, lead and other metal sheets, protective goggles and gloves, and other strategically shaped and placed materials
  • A system of gates, keys, and light-beams interlocked with radiation-producing equipment ensures that radiation areas are unoccupied while the RPE is on
  • Radiation monitors interlocked with radiation-producing equipment serve to limit area and personnel radiation exposure
  • Personal and area badges, which record exposures for 1- or 3-month periods; by monitoring these readings, occupational exposures of personnel and particular locations are tracked

Be sure to keep the time you spend in residual radiation areas to a minimum. If you need to work near radioactivity, use safety glasses, a radiation badge, and a dosimeter. It is also a good idea to wash your hands after working near residual radioactivity.

New York State licenses Cornell University to administrate use of Radiation-Producing Equipment (RPE) and radioactive sources. NYS regulations are detailed on the Department of Health website and in 10 NYCRR Part 16 and its appendices (A, B, and C). The University Radiation Safety Committee (RSC) issues permits to responsible, authorized parties known as Radiation Permit Holders (RPH) on campus. The University Radiation Safety Officer (RSO), a member of the EHS staff, implements policy established by the RSC. CLASSE has several RPH's, which are listed in Who's Who. If you notice a problem with the radiation safety equipment (e.g. interlocks, monitors) or a possible violation of CLASSE radiation procedures or policies, please notify the appropriate RPH and the CLASSE Safety Director.

Consider consulting OSHA Safety and Health Topic: Radiation and/or EHS Radiation Safety.

End of Radiation Safety
Topic revision: r80 - 25 Apr 2023, RigelLochner
This site is powered by FoswikiCopyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding CLASSE Wiki? Send feedback